Home
Class 11
MATHS
The sequences S = i + 2i^2 + 3i^3 +. . ....

The sequences `S = i + 2i^2 + 3i^3 +. . . . . . . . . ` upto 100 terms simplifies to where `i=sqrt(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of i-2-3i+4 cdots upto100 terms where i= sqrt(-1) is

Write the sum of the series i+i^2+i^3+....... upto 1000 terms.

If i^(2)=-1 then i+i^(2)+i^(3)+…..... . upto 1000 terms is equal to

The value of i^2 + i^4 + i^6 + i^8.... upto (2n+1) terms , where i^2 = -1, is equal to:

i+ 2i^(2) + 3i^(3) + 4i^(4) + …. + 100i^(100) =

The sum of i-2-3i+4... up to 100 terms, where i=sqrt(-1) is 50(1-i) b.25i c.25(1+i) d.100(1-i)

If i^2=-1, then the sum i+i^2+i^3+... upto 1000 terms is equal to a. 1 b. -1 c. i d. 0

Write the sum of the series i+i^(2)+i^(3)+ upto 1000 terms.

If i^(2)=1, then the sum i+i^(2)+i^(3)+ upto 1000 terms is equal to 1 b.-1 c.i d.0

Simplify: i+ 2i^(2) + 3i^(3) + i^(4)