Home
Class 9
MATHS
a^3+ab(1-2a)-2b^2...

`a^3+ab(1-2a)-2b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Incorrect: (2a+3b)(a-b)=2a^2+ab-3b^2 Correct: (2a+3b)(a-b)=2a^2+3ab-2ab-3b^2=2a^2+ab-3b^2 .

|{:(" "1+a^2-b^2," "2ab," "-2b),(" "2ab,1-a^2+b^2," "2a),(" "2b," "-2a,1-a^2-b^2):}|=(1+a^2+b^2)^3

If a:b=2:3, then the value of (5a^(3)-2a^(2)b):(3ab^(2)-b^(3)) is :

If (a^(3//2)-ab^(1//2)+a^(1//2)b-b^(3//2)) is divided by (a^(1//2)-b^(1//2)) , then the quotient is :

Simplify : 6a^(2)+3ab+5b^(2)-2ab-b^(2)+2a^(2)+4ab+2b^(2)-a^(2) .

The factors of 8a^(3)+b^(3)-6ab+1 are (a) (2a+b-1)(4a^(2)+b^(2)+1-3ab-2a) (b) (2a-b+1)(4a^(2)+b^(2)-4ab+1-2a+b)(2a+b+1)(4a^(2)+b^(2)+1-2ab-b-2a) (d) (2a-1+b)(4a^(2)+1-4a-b-2ab)

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

If abs(a)=1, abs(b)=2" and "abs(a-2b)=4" then "abs(a+3b) is equal to