Home
Class 12
MATHS
If sn=sum(r < s) (1/(nCr)+1/(nCs)) and t...

If `s_n=sum_(r < s) (1/(nC_r)+1/(nC_s)) and t_n=sum_(r < s)(r/(nC_r)+s/(nC_s)),` then `t_n/s_n=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(n)=sum_(r=1)^(n)log_(e)(a^(r));a>0&S_(n)=sum_(r=1)^(n)a_(r) then minimum value of n such that sum is greater than 1335log_(e)a^(n) is

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

Let t_(r)=r! and S_(n)=sum_(r=1)^(n)t_(r), (n>10) then remainder when S_(n) is divided by 24 is:

Let t_(t)=r! and S_(n)=sum_(r=1)^(n)r!,n>4,n in N then (S_(n))/(24)=K+(lambda)/(24),K,lambda in N then lambda can be is

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

Let n in N, S_n=sum_(r=0)^(3n)^(3n)C_r and T_n=sum_(r=0)^n^(3n)C_(3r) , then |S_n-3T_n| equals