Home
Class 14
MATHS
x संख्याओ x(1),x(2),x(3),........x(n) का...

`x` संख्याओ `x_(1),x_(2),x_(3),........x_(n)` का औसत `overline x` है। तब `sum_(i=x)^n(x_(1)-overlinex)` का मान ज्ञात करे?

Promotional Banner

Similar Questions

Explore conceptually related problems

(x_1-overlinex)+(x_2-overlinex)+....+(x_n-overlinex)=

The mean and variance of n observations x_(1),x_(2),x_(3),...x_(n) are 5 and 0 respectively. If sum_(i=1)^(n)x_(i)^(2)=400 , then the value of n is equal to

If barx is the mean of x_1, x_2, x_3, ... .. , x_n , then sum_(i=1)^(n)(x_i-barx)=

यदि x+(1)/(x)=sqrt(3) है तब x^(3)+(1)/(x^(3)) का मान होगा -

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i) = 20 show the values of n are 5 or 20

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

The mean deviation for n observations x_(1),x_(2),.........,x_(n) from their mean X is given by (a)sum_(i=1)^(n)(x_(i)-X)(b)(1)/(n)sum_(i=1)^(n)(x_(i)-X)(c)sum_(i=1)^(n)(x_(i)-X)^(2)(c)(1)/(n)sum_(i=1)^(n)(x_(i)-X)^(2)

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i)^(2) = 20 show the values of n are 5 or 20

The mean and variance of n observations x_(1), x_(2), x_(3),……..,x_(n) are 5 and 0 respectively. If sum_(i=1)^(n) x_(i)^(2) = 400 , then the value of n is equal to