Home
Class 11
MATHS
If ((2n)!)/(3!(2n-3)!)a n d(n !)/(2!(n-2...

If `((2n)!)/(3!(2n-3)!)a n d(n !)/(2!(n-2)!)` are in the ratio `44 :3,` find `ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((2n)!)/(3!(2n-3)!) and (n!)/(2!(n-2)!) are in the ratio 44:3 find n.

If (n !)/(2!(n-2)!) and (n !)/(4!(n-4)!) are in the ratio 2:1 , find the value of ndot

If ((2n!))/((3!)xx(2n-3)!): (n!)/((2!)xx(n-2)!)=44:3 , find the value of n.

Solve for n : ((2n)!)/( 3!( 2n-3) !) : ( n!)/( 2!( n-2)!) = 44 : 3

(i) If (n!)/(2.(n-2)!): (n!)/(4!.(n-4)!) = 2:1 , find the valye of n. (ii) If ((2n)!)/(3!(2n-3)!): (n!)/(2!(n-2)!) = 44:3 , then find the value of n.

(i) If (n!)/(2.(n-2)!): (n!)/(4!.(n-4)!) = 2:1 , find the valye of n. (ii) If ((2n)!)/(3!(2n-3)!): (n!)/(2!(n-2)!) = 44:3 , then find the value of n.

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of ndot

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot