Home
Class 12
MATHS
If (a+sqrt2b cosx)(a-sqrt2b cosy)=a^2-b^...

If `(a+sqrt2b cosx)(a-sqrt2b cosy)=a^2-b^2, ` where `a gt b gt 0` , then `(dx)/(dy) ` at `(pi/4,pi/4)` is :

A

`(a-b)/(a+b)`

B

`(a+b)/(a-b)`

C

`(2a+b)/(2a-b)`

D

`(a-2b)/(a+2b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((a + \sqrt{2} b \cos x)(a - \sqrt{2} b \cos y) = a^2 - b^2\) and find \(\frac{dx}{dy}\) at the point \((\frac{\pi}{4}, \frac{\pi}{4})\), we will follow these steps: ### Step 1: Differentiate the equation with respect to \(y\) We will apply the product rule to differentiate the left-hand side: \[ \frac{d}{dy}[(a + \sqrt{2} b \cos x)(a - \sqrt{2} b \cos y)] = 0 \] Using the product rule: \[ \frac{d}{dy}(u \cdot v) = u \frac{dv}{dy} + v \frac{du}{dy} \] Let \(u = a + \sqrt{2} b \cos x\) and \(v = a - \sqrt{2} b \cos y\). Differentiating \(u\) with respect to \(y\): \[ \frac{du}{dy} = 0 \quad \text{(since \(u\) does not depend on \(y\))} \] Differentiating \(v\) with respect to \(y\): \[ \frac{dv}{dy} = \sqrt{2} b \sin y \] Thus, we have: \[ 0 = u \cdot \sqrt{2} b \sin y + v \cdot 0 \] This simplifies to: \[ 0 = (a + \sqrt{2} b \cos x)(\sqrt{2} b \sin y) \] ### Step 2: Differentiate the right-hand side The right-hand side \(a^2 - b^2\) is constant with respect to \(y\), so its derivative is: \[ \frac{d}{dy}(a^2 - b^2) = 0 \] ### Step 3: Set up the equation From the differentiation, we have: \[ (a + \sqrt{2} b \cos x)(\sqrt{2} b \sin y) + (a - \sqrt{2} b \cos y)(\sqrt{2} b \sin x) \frac{dx}{dy} = 0 \] Rearranging gives: \[ (a + \sqrt{2} b \cos x)(\sqrt{2} b \sin y) = -(a - \sqrt{2} b \cos y)(\sqrt{2} b \sin x) \frac{dx}{dy} \] ### Step 4: Solve for \(\frac{dx}{dy}\) Now, we can isolate \(\frac{dx}{dy}\): \[ \frac{dx}{dy} = -\frac{(a + \sqrt{2} b \cos x)(\sqrt{2} b \sin y)}{(a - \sqrt{2} b \cos y)(\sqrt{2} b \sin x)} \] ### Step 5: Evaluate at \((\frac{\pi}{4}, \frac{\pi}{4})\) Now we substitute \(x = \frac{\pi}{4}\) and \(y = \frac{\pi}{4}\): \[ \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \] Substituting these values into our expression for \(\frac{dx}{dy}\): \[ \frac{dx}{dy} = -\frac{(a + \sqrt{2} b \cdot \frac{1}{\sqrt{2}})(\sqrt{2} b \cdot \frac{1}{\sqrt{2}})}{(a - \sqrt{2} b \cdot \frac{1}{\sqrt{2}})(\sqrt{2} b \cdot \frac{1}{\sqrt{2}})} \] This simplifies to: \[ \frac{dx}{dy} = -\frac{(a + b)(b)}{(a - b)(b)} \] Canceling \(b\) from numerator and denominator (since \(b > 0\)) gives: \[ \frac{dx}{dy} = -\frac{a + b}{a - b} \] ### Final Answer Thus, the value of \(\frac{dx}{dy}\) at \((\frac{\pi}{4}, \frac{\pi}{4})\) is: \[ \frac{dx}{dy} = -\frac{a + b}{a - b} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

If (a+sqrt(2)bcosx)(a-sqrt(2)bcosy)=a^2-b^2 , find (dx)/(dy) at (pi/4,pi/4) .

If a lt 0, b gt 0 , then sqrt(a)sqrt(b) equal to

Square root of 2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) is

sqrt(a +b -2 sqrt(ab)) is ____ where sqrta gt sqrtb

If (a+b):sqrt(ab)=4:1 then find a:b if a gt b gt 0

sqrt(4+sqrt(8-sqrt(32+sqrt(768))))=a sqrt(2)(cos(11 pi))/(b) where a and b are natural numbers then (b)/(a) is divisible by

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. If the tangent to the curve y= e^x at a point (c, e^c) and the normal ...

    Text Solution

    |

  2. The total number of 3-digit numbers, whose sum of digits is 10, is .

    Text Solution

    |

  3. If (a+sqrt2b cosx)(a-sqrt2b cosy)=a^2-b^2, where a gt b gt 0 , then ...

    Text Solution

    |

  4. The mean and variance of 8 observations are 10 and 13.5 respectively ....

    Text Solution

    |

  5. 1+(1-1.2^2)+(1-3.4^2)+(1-5.6^2)+.....(1-19.20^2) = alpha-220beta fi...

    Text Solution

    |

  6. A survey shows that 63% of the people watch a news channal whereas ...

    Text Solution

    |

  7. The following statement (pvecq)vec[(~ pvecq)vecq] is: equivalent t...

    Text Solution

    |

  8. If two vertical pale AB and CD of height 15 m and 10 m and A and C are...

    Text Solution

    |

  9. If f is twice differentiable function for x in R such that f(2)=5,f'(2...

    Text Solution

    |

  10. sum(r=0)^(20).^(50-r)C6

    Text Solution

    |

  11. If A=[{:(Costheta ,isintheta),("isintheta,costheta):}],(theta=pi/24)an...

    Text Solution

    |

  12. If alpha and beta are roots of x^2-3x+p=0 and gamma and delta are the ...

    Text Solution

    |

  13. Let x^2/a^2+y^2/b^2=1(agtb) be a given ellipse, length of whose latus...

    Text Solution

    |

  14. A triangle ABC laying in the first quadrant has two vertices as A(1 , ...

    Text Solution

    |

  15. If from point P(3,3) on the hyperbola a normal is drawn which cuts x-a...

    Text Solution

    |

  16. The integral int((X)/(xsinx + cosx))^2dx is equal to (where C is a c...

    Text Solution

    |

  17. Let f(x) =intsqrtx/((1+x)^2)dx(xge0) . The f(3) - f(1) is equal to :

    Text Solution

    |

  18. If u=(2z+i)/(z-ki) where z=x+iy and k gt 0 Curve Re(u)+Im(u)= cuts y...

    Text Solution

    |

  19. Let x0 be the point of local maxima of f(x)= veca.(vecbxxvecc), where ...

    Text Solution

    |

  20. Let [t] denote the greatest integer st. Then the equation in x,[x]^2+2...

    Text Solution

    |