Home
Class 12
MATHS
If A=[{:(Costheta ,isintheta),("isinthet...

If `A=[{:(Costheta ,isintheta),("isintheta,costheta):}],(theta=pi/24)and A^(5)=[(a,b),(c,d)],` where `i=sqrt(-1)` then, which one of the following is not true ?

A

`a^2-d^2=0`

B

`a^2-c^2=1`

C

`a^2-b^2=1/2`

D

`0lea^2+b^2le1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given matrix \( A \): \[ A = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix} \] where \( \theta = \frac{\pi}{24} \). Next, we need to find \( A^5 \). According to De Moivre's theorem, we can express \( A^n \) in terms of \( \cos(n\theta) \) and \( \sin(n\theta) \): \[ A^n = \begin{pmatrix} \cos(n\theta) & i \sin(n\theta) \\ i \sin(n\theta) & \cos(n\theta) \end{pmatrix} \] For \( n = 5 \): \[ A^5 = \begin{pmatrix} \cos(5\theta) & i \sin(5\theta) \\ i \sin(5\theta) & \cos(5\theta) \end{pmatrix} \] Now, substituting \( \theta = \frac{\pi}{24} \): \[ 5\theta = 5 \cdot \frac{\pi}{24} = \frac{5\pi}{24} \] Thus, \[ A^5 = \begin{pmatrix} \cos\left(\frac{5\pi}{24}\right) & i \sin\left(\frac{5\pi}{24}\right) \\ i \sin\left(\frac{5\pi}{24}\right) & \cos\left(\frac{5\pi}{24}\right) \end{pmatrix} \] Now we denote the elements of \( A^5 \) as follows: \[ A^5 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] where \( a = \cos\left(\frac{5\pi}{24}\right) \), \( b = i \sin\left(\frac{5\pi}{24}\right) \), \( c = i \sin\left(\frac{5\pi}{24}\right) \), and \( d = \cos\left(\frac{5\pi}{24}\right) \). ### Step 1: Analyze the options 1. **Option 1**: \( a^2 - d^2 = 0 \) - Since \( a = d \), this option is true. 2. **Option 2**: \( a^2 - c^2 = 1 \) - Here, \( c = i \sin\left(\frac{5\pi}{24}\right) \), thus: \[ a^2 - c^2 = \cos^2\left(\frac{5\pi}{24}\right) - (i \sin\left(\frac{5\pi}{24}\right))^2 = \cos^2\left(\frac{5\pi}{24}\right) + \sin^2\left(\frac{5\pi}{24}\right) = 1 \] - This option is true. 3. **Option 3**: \( a^2 - b^2 = \frac{1}{2} \) - Here, \( b = i \sin\left(\frac{5\pi}{24}\right) \), thus: \[ a^2 - b^2 = \cos^2\left(\frac{5\pi}{24}\right) - (i \sin\left(\frac{5\pi}{24}\right))^2 = \cos^2\left(\frac{5\pi}{24}\right) + \sin^2\left(\frac{5\pi}{24}\right) = 1 \] - This option is false since it should equal 1, not \( \frac{1}{2} \). 4. **Option 4**: \( a + b^2 \) is between 0 and 1. - We calculate: \[ a + b^2 = \cos\left(\frac{5\pi}{24}\right) - \sin^2\left(\frac{5\pi}{24}\right) = \cos\left(\frac{5\pi}{24}\right) - (1 - \cos^2\left(\frac{5\pi}{24}\right)) \] \[ = 2\cos^2\left(\frac{5\pi}{24}\right) - 1 \] - This value is also between 0 and 1. ### Conclusion The option that is **not true** is **Option 3**: \( a^2 - b^2 = \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then "A^2=I is true for

(cos3theta+isin3theta)^5/(costheta+isintheta)^6

A=[[costheta,isintheta],[isintheta,costheta]] and A^5=[[a,d],[b,c]] . Then which one is correct.

int(costheta-cos2theta)/(1-cos theta)d theta=

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=

int_0^(pi/2) (a+bsintheta)^3costheta d theta

If : sin theta= sqrt3*costheta, "then" : 2(sin theta+costheta)-1=

Express ((costheta+isintheta)^(4))/((sintheta+icostheta)^(5)) in a+ib Form , where i=sqrt(-1).

(sintheta-costheta+1)/(sintheta+costheta-1) (where theta ne (pi)/(2)) is equal to

If x=costheta(1+costheta),y=sintheta(1+costheta)," then "((dy)/(dx))" at "theta=(pi)/(2) is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. If f is twice differentiable function for x in R such that f(2)=5,f'(2...

    Text Solution

    |

  2. sum(r=0)^(20).^(50-r)C6

    Text Solution

    |

  3. If A=[{:(Costheta ,isintheta),("isintheta,costheta):}],(theta=pi/24)an...

    Text Solution

    |

  4. If alpha and beta are roots of x^2-3x+p=0 and gamma and delta are the ...

    Text Solution

    |

  5. Let x^2/a^2+y^2/b^2=1(agtb) be a given ellipse, length of whose latus...

    Text Solution

    |

  6. A triangle ABC laying in the first quadrant has two vertices as A(1 , ...

    Text Solution

    |

  7. If from point P(3,3) on the hyperbola a normal is drawn which cuts x-a...

    Text Solution

    |

  8. The integral int((X)/(xsinx + cosx))^2dx is equal to (where C is a c...

    Text Solution

    |

  9. Let f(x) =intsqrtx/((1+x)^2)dx(xge0) . The f(3) - f(1) is equal to :

    Text Solution

    |

  10. If u=(2z+i)/(z-ki) where z=x+iy and k gt 0 Curve Re(u)+Im(u)= cuts y...

    Text Solution

    |

  11. Let x0 be the point of local maxima of f(x)= veca.(vecbxxvecc), where ...

    Text Solution

    |

  12. Let [t] denote the greatest integer st. Then the equation in x,[x]^2+2...

    Text Solution

    |

  13. xy'-y=x^2(xcosx+sinx) and if f(pi)=pi then find f''(pi/2)+f(pi/2)=

    Text Solution

    |

  14. If f(x)=|x-2|, x in [0,4] and g(x)=f(f(x)). Find int2^3 (g(x)-f(x))dx.

    Text Solution

    |

  15. If (2x^2+3x+4)^(10)=sum(r=0)^(20) ar x^r, then (a7)/(a(13)=

    Text Solution

    |

  16. If the equation of a plane P , passing through in the intersection of ...

    Text Solution

    |

  17. If probability of hitting a target is 1/10, Then number of shot requir...

    Text Solution

    |

  18. Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(...

    Text Solution

    |

  19. If the system of equations x-2y+3z=9 2x+y+z=b x-7y+az=24 , has i...

    Text Solution

    |

  20. The intergral int(1)^(2) e^(x) . X^(2) (2 + log(e)x) dx equals "

    Text Solution

    |