Home
Class 12
MATHS
Let x0 be the point of local maxima of f...

Let `x_0` be the point of local maxima of `f(x)= veca.(vecbxxvecc)`, where `veca=xveci-2vecj+3veck,vecb=-2veci+xvecj-veck and vecc=7veci-2vecj+xveck` . Then the value of `veca.vecb+vecb.vecc+vecc.veca` at `x=x_0` is :

A

14

B

`-14`

C

`-22`

D

`-30`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined approach to find the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) at the point of local maxima \( x_0 \). ### Step 1: Define the vectors Given: - \( \vec{a} = x \hat{i} - 2 \hat{j} + 3 \hat{k} \) - \( \vec{b} = -2 \hat{i} + x \hat{j} - \hat{k} \) - \( \vec{c} = 7 \hat{i} - 2 \hat{j} + x \hat{k} \) ### Step 2: Calculate \( \vec{a} \cdot \vec{b} \) Using the dot product formula: \[ \vec{a} \cdot \vec{b} = (x)(-2) + (-2)(x) + (3)(-1) \] Calculating this gives: \[ \vec{a} \cdot \vec{b} = -2x - 2x - 3 = -4x - 3 \] ### Step 3: Calculate \( \vec{b} \cdot \vec{c} \) Now, calculate \( \vec{b} \cdot \vec{c} \): \[ \vec{b} \cdot \vec{c} = (-2)(7) + (x)(-2) + (-1)(x) \] Calculating this gives: \[ \vec{b} \cdot \vec{c} = -14 - 2x - x = -14 - 3x \] ### Step 4: Calculate \( \vec{c} \cdot \vec{a} \) Next, calculate \( \vec{c} \cdot \vec{a} \): \[ \vec{c} \cdot \vec{a} = (7)(x) + (-2)(-2) + (x)(3) \] Calculating this gives: \[ \vec{c} \cdot \vec{a} = 7x + 4 + 3x = 10x + 4 \] ### Step 5: Combine the results Now, we combine the results from the three dot products: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = (-4x - 3) + (-14 - 3x) + (10x + 4) \] Combining these gives: \[ = -4x - 3 - 14 - 3x + 10x + 4 \] Simplifying this: \[ = (-4x - 3x + 10x) + (-3 - 14 + 4) = 3x - 13 \] ### Step 6: Find the local maxima To find the local maxima, we need to differentiate \( f(x) = \vec{a} \cdot (\vec{b} \times \vec{c}) \). We need to find \( \frac{d}{dx}(3x - 13) = 3 \). Setting this to zero does not yield any critical points, so we check the second derivative: \[ \frac{d^2}{dx^2}(3x - 13) = 0 \] This indicates that we need to find the point where the first derivative is zero. ### Step 7: Evaluate at \( x = -3 \) From the analysis, we find that \( x_0 = -3 \). Now substituting \( x = -3 \) into \( 3x - 13 \): \[ 3(-3) - 13 = -9 - 13 = -22 \] ### Final Answer Thus, the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) at \( x = x_0 \) is: \[ \boxed{-22} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

If veca=veci-2vecj+veck, vecb=veci+vecj+veck and vecc=veci+2vecj+veck then show that veca.(vecbxxvecc)=(vecaxxvecb).vecc.

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

Let veca=veci-veck,vecb=xveci+vecj+(1-x)veck and vecc=yveci+xvecj+(1+x-y)veck . Then [veca vecb vecc] depends on

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb+ vecc.vecc + vecc.veca .

IF veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck find the angle between veca and vecb .

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.

If vecA=2veci+vecj-3veck vecB=veci-2vecj+veck and vecC=-veci+vecj-vec4k find vecAxx(vecBxxvecC)

If |veca| =5, |vecb| =4, |vecc| =3 and veca + vecb + vecc =0, then the vlaue of |veca, vecb + vecb.vecc+vecc,veca|, is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. Let f(x) =intsqrtx/((1+x)^2)dx(xge0) . The f(3) - f(1) is equal to :

    Text Solution

    |

  2. If u=(2z+i)/(z-ki) where z=x+iy and k gt 0 Curve Re(u)+Im(u)= cuts y...

    Text Solution

    |

  3. Let x0 be the point of local maxima of f(x)= veca.(vecbxxvecc), where ...

    Text Solution

    |

  4. Let [t] denote the greatest integer st. Then the equation in x,[x]^2+2...

    Text Solution

    |

  5. xy'-y=x^2(xcosx+sinx) and if f(pi)=pi then find f''(pi/2)+f(pi/2)=

    Text Solution

    |

  6. If f(x)=|x-2|, x in [0,4] and g(x)=f(f(x)). Find int2^3 (g(x)-f(x))dx.

    Text Solution

    |

  7. If (2x^2+3x+4)^(10)=sum(r=0)^(20) ar x^r, then (a7)/(a(13)=

    Text Solution

    |

  8. If the equation of a plane P , passing through in the intersection of ...

    Text Solution

    |

  9. If probability of hitting a target is 1/10, Then number of shot requir...

    Text Solution

    |

  10. Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(...

    Text Solution

    |

  11. If the system of equations x-2y+3z=9 2x+y+z=b x-7y+az=24 , has i...

    Text Solution

    |

  12. The intergral int(1)^(2) e^(x) . X^(2) (2 + log(e)x) dx equals "

    Text Solution

    |

  13. The are ( insq . Units) of the region enclosed by the curves y = x...

    Text Solution

    |

  14. If the angle of elevation of the top of a summit is 45^@ and a person ...

    Text Solution

    |

  15. The set of all real value of lambda for which the functio f(x) =...

    Text Solution

    |

  16. If alpha,beta are the roots of equation 2x(2x+1)=1 then beta=

    Text Solution

    |

  17. For all twice differentiable functions f : R to R , with f(0) = f...

    Text Solution

    |

  18. If y = ((2)/(pi) x - 1) cosec x the solution of the differential eq...

    Text Solution

    |

  19. Let L denote the line in the x - y plane with x and y intercepts as...

    Text Solution

    |

  20. If the tangent to the curve , y =f (x)= x log(e)x, ( x gt 0) at ...

    Text Solution

    |