The minimum/minimum value `(dy)/(dx)=0rArr5(2x)-2(1)+0=0=0rArrx=(1)/(5)` Now at `x=(1)/(5)m(d_(y^2))/(dx^(2))=10 x=(1)/(5)m(d_(y^2))/(dx^(2))=10` which is positive so minima at `x=(1)/(5)`. Therefore `y_("min")=5((1)/(5))^(2)-2((1)/(5))+1=(4)/(5)`
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise EXERCISE-1|128 Videos
BASIC MATHS
ALLEN|Exercise EXERCISE-2|80 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
The minimum value of y=2x^(2)-x+1 is
The minimum value of 2x^(2)+x-1 is
If x,y in R and satisfy (x+5)^(2)+(y-12)^(2)=14^(2) then the minimum value of x^(2)+y^(2) is