Home
Class 12
PHYSICS
Determine the average value of y=2x+3 in...

Determine the average value of `y=2x+3` in the interval `0 le x le 1`.

A

1

B

5

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
D

`y_(av)=(int_(0)^(1)ydx)/(1-0)=int_(0)^(1)(2x+3)dx=[2((x^(2))/(2))+3x]_(0)^(1)=1^(2)+3(1)-0^(2)-3(0)=1+3=4`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If the function f(x)=x^(2)+bx+3 is not injective for values of x in the interval 0 le x le 1 then b lies in

The area enclosed between the curve y=sin^(2)x and y=cos^(2)x in the interval 0le x le pi is _____ sq. units.

Find minium value of (9x^(2)sin^(2)x+4)/(2sinx.x) in the interval 0 le x le pi .

Draw the graph of the function f(x) = x - |x - x^(2)|, -1 le x le 1 and discuss the continuity or discontinuity of f in the interval -1 le x le 1

Determine the maximum value of Z=11x+7y subject to the constraints 2x+y le 6 , x le 2, x ge 0, y ge 0

Determine the average length of all vertical chords of the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2))=1 over the interval a le x le 2a

The solution set of (2"cos"x-1)(3+2"cos"x) = 0 in the interval 0 le x le 2 pi , is

The maximum value of the function ƒ(x) = e^x + x ln x on the interval 1 le x le 2 is