Home
Class 12
PHYSICS
Solve for x: (i) 10x^(2)-27x+5=0 (ii) p...

Solve for x: (i) `10x^(2)-27x+5=0` (ii) `pqx^(2)-(p^(2)+q^(2))x+pq=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations step by step, we will tackle each equation one at a time. ### (i) Solve for x: \(10x^2 - 27x + 5 = 0\) **Step 1: Rewrite the equation** We start with the equation: \[ 10x^2 - 27x + 5 = 0 \] **Step 2: Factor the quadratic** We need to factor the quadratic expression. To do this, we can look for two numbers that multiply to \(10 \times 5 = 50\) and add up to \(-27\). We can rewrite the middle term: \[ 10x^2 - 25x - 2x + 5 = 0 \] **Step 3: Group the terms** Now, we group the terms: \[ (10x^2 - 25x) + (-2x + 5) = 0 \] **Step 4: Factor by grouping** Factoring out common terms from each group: \[ 5x(2x - 5) - 1(2x - 5) = 0 \] Now, we can factor out \((2x - 5)\): \[ (2x - 5)(5x - 1) = 0 \] **Step 5: Set each factor to zero** Now we set each factor to zero: 1. \(2x - 5 = 0\) 2. \(5x - 1 = 0\) **Step 6: Solve for x** From \(2x - 5 = 0\): \[ 2x = 5 \implies x = \frac{5}{2} \] From \(5x - 1 = 0\): \[ 5x = 1 \implies x = \frac{1}{5} \] **Final Solutions:** The solutions for the equation \(10x^2 - 27x + 5 = 0\) are: \[ x = \frac{5}{2} \quad \text{and} \quad x = \frac{1}{5} \] --- ### (ii) Solve for x: \(pqx^2 - (p^2 + q^2)x + pq = 0\) **Step 1: Rewrite the equation** We start with the equation: \[ pqx^2 - (p^2 + q^2)x + pq = 0 \] **Step 2: Divide by pq** To simplify, we can divide the entire equation by \(pq\) (assuming \(pq \neq 0\)): \[ x^2 - \left(\frac{p^2 + q^2}{pq}\right)x + 1 = 0 \] **Step 3: Identify coefficients** In the standard form \(ax^2 + bx + c = 0\), we have: - \(a = 1\) - \(b = -\left(\frac{p^2 + q^2}{pq}\right)\) - \(c = 1\) **Step 4: Use the quadratic formula** We can use the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ x = \frac{\left(\frac{p^2 + q^2}{pq}\right) \pm \sqrt{\left(\frac{p^2 + q^2}{pq}\right)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] **Step 5: Simplify the expression** Calculating the discriminant: \[ \left(\frac{p^2 + q^2}{pq}\right)^2 - 4 = \frac{(p^2 + q^2)^2}{p^2q^2} - 4 \] This can be rewritten as: \[ \frac{(p^2 + q^2)^2 - 4p^2q^2}{p^2q^2} \] **Step 6: Find the roots** Now we can express the roots: \[ x = \frac{\frac{p^2 + q^2}{pq} \pm \sqrt{\frac{(p^2 + q^2)^2 - 4p^2q^2}{p^2q^2}}}{2} \] This simplifies to: \[ x = \frac{p^2 + q^2 \pm \sqrt{(p^2 - q^2)^2}}{2pq} \] Thus, the roots are: \[ x = \frac{p^2 + q^2 + (p^2 - q^2)}{2pq} = \frac{2p^2}{2pq} = \frac{p}{q} \quad \text{and} \quad x = \frac{p^2 + q^2 - (p^2 - q^2)}{2pq} = \frac{2q^2}{2pq} = \frac{q}{p} \] **Final Solutions:** The solutions for the equation \(pqx^2 - (p^2 + q^2)x + pq = 0\) are: \[ x = \frac{p}{q} \quad \text{and} \quad x = \frac{q}{p} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Solve the Equation: (i) x^(2)+3x+5=0 (ii) x^(2)-x+2=0 .

Solve: (i) 27x^(2)-10x+1=0 . (ii) 21x^(2)-28x+10=0 .

Solve: (i) 3x^(2)-4x+(20)/(3)=0 . (ii) x^(2)-2x+(2)/(3)=0 .

Solve using formula : (i) x^(2) - 4x-5=0 (ii) x^(2) - 7x - 3=0 (iii) With the help of flow chart given below solve the equation x^(2) + 2sqrt(5) x + 5 = 0 using the formula :

a^(2)p^(2)x^(2)-q^(2)=0,x=

Solve log_(10)(x^(2)-2x-2) le 0 .

(i) x^(2) + 6x + 5 = 0 (ii) y^(2) -10y+21 = 0

If alpha,beta are the roots of the equation px^(2)-qx+r=0, then the equation whose roots are alpha^(2)+(r)/(p) and beta^(2)+(r)/(p) is (i) p^(3)x^(2)+pq^(2)x+r=0 (ii) px^(2)-qx+r=0 (iii) p^(3)x^(2)-pq^(2)x+q^(2)r=0 (iv) px^(2)+qx-r=0

(i) x^(2) -10x+21 = 0 (ii) y^(2) -11y+18 = 0