Solve for x: (i) `10x^(2)-27x+5=0` (ii) `pqx^(2)-(p^(2)+q^(2))x+pq=0`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the given equations step by step, we will tackle each equation one at a time.
### (i) Solve for x: \(10x^2 - 27x + 5 = 0\)
**Step 1: Rewrite the equation**
We start with the equation:
\[
10x^2 - 27x + 5 = 0
\]
**Step 2: Factor the quadratic**
We need to factor the quadratic expression. To do this, we can look for two numbers that multiply to \(10 \times 5 = 50\) and add up to \(-27\). We can rewrite the middle term:
\[
10x^2 - 25x - 2x + 5 = 0
\]
**Step 3: Group the terms**
Now, we group the terms:
\[
(10x^2 - 25x) + (-2x + 5) = 0
\]
**Step 4: Factor by grouping**
Factoring out common terms from each group:
\[
5x(2x - 5) - 1(2x - 5) = 0
\]
Now, we can factor out \((2x - 5)\):
\[
(2x - 5)(5x - 1) = 0
\]
**Step 5: Set each factor to zero**
Now we set each factor to zero:
1. \(2x - 5 = 0\)
2. \(5x - 1 = 0\)
**Step 6: Solve for x**
From \(2x - 5 = 0\):
\[
2x = 5 \implies x = \frac{5}{2}
\]
From \(5x - 1 = 0\):
\[
5x = 1 \implies x = \frac{1}{5}
\]
**Final Solutions:**
The solutions for the equation \(10x^2 - 27x + 5 = 0\) are:
\[
x = \frac{5}{2} \quad \text{and} \quad x = \frac{1}{5}
\]
---
### (ii) Solve for x: \(pqx^2 - (p^2 + q^2)x + pq = 0\)
**Step 1: Rewrite the equation**
We start with the equation:
\[
pqx^2 - (p^2 + q^2)x + pq = 0
\]
**Step 2: Divide by pq**
To simplify, we can divide the entire equation by \(pq\) (assuming \(pq \neq 0\)):
\[
x^2 - \left(\frac{p^2 + q^2}{pq}\right)x + 1 = 0
\]
**Step 3: Identify coefficients**
In the standard form \(ax^2 + bx + c = 0\), we have:
- \(a = 1\)
- \(b = -\left(\frac{p^2 + q^2}{pq}\right)\)
- \(c = 1\)
**Step 4: Use the quadratic formula**
We can use the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\):
\[
x = \frac{\left(\frac{p^2 + q^2}{pq}\right) \pm \sqrt{\left(\frac{p^2 + q^2}{pq}\right)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}
\]
**Step 5: Simplify the expression**
Calculating the discriminant:
\[
\left(\frac{p^2 + q^2}{pq}\right)^2 - 4 = \frac{(p^2 + q^2)^2}{p^2q^2} - 4
\]
This can be rewritten as:
\[
\frac{(p^2 + q^2)^2 - 4p^2q^2}{p^2q^2}
\]
**Step 6: Find the roots**
Now we can express the roots:
\[
x = \frac{\frac{p^2 + q^2}{pq} \pm \sqrt{\frac{(p^2 + q^2)^2 - 4p^2q^2}{p^2q^2}}}{2}
\]
This simplifies to:
\[
x = \frac{p^2 + q^2 \pm \sqrt{(p^2 - q^2)^2}}{2pq}
\]
Thus, the roots are:
\[
x = \frac{p^2 + q^2 + (p^2 - q^2)}{2pq} = \frac{2p^2}{2pq} = \frac{p}{q} \quad \text{and} \quad x = \frac{p^2 + q^2 - (p^2 - q^2)}{2pq} = \frac{2q^2}{2pq} = \frac{q}{p}
\]
**Final Solutions:**
The solutions for the equation \(pqx^2 - (p^2 + q^2)x + pq = 0\) are:
\[
x = \frac{p}{q} \quad \text{and} \quad x = \frac{q}{p}
\]
---
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise EXERCISE-1|128 Videos
BASIC MATHS
ALLEN|Exercise EXERCISE-2|80 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
Solve the Equation: (i) x^(2)+3x+5=0 (ii) x^(2)-x+2=0 .
Solve: (i) 27x^(2)-10x+1=0 . (ii) 21x^(2)-28x+10=0 .
Solve: (i) 3x^(2)-4x+(20)/(3)=0 . (ii) x^(2)-2x+(2)/(3)=0 .
Solve using formula : (i) x^(2) - 4x-5=0 (ii) x^(2) - 7x - 3=0 (iii) With the help of flow chart given below solve the equation x^(2) + 2sqrt(5) x + 5 = 0 using the formula :
a^(2)p^(2)x^(2)-q^(2)=0,x=
Solve log_(10)(x^(2)-2x-2) le 0 .
(i) x^(2) + 6x + 5 = 0 (ii) y^(2) -10y+21 = 0
If alpha,beta are the roots of the equation px^(2)-qx+r=0, then the equation whose roots are alpha^(2)+(r)/(p) and beta^(2)+(r)/(p) is (i) p^(3)x^(2)+pq^(2)x+r=0 (ii) px^(2)-qx+r=0 (iii) p^(3)x^(2)-pq^(2)x+q^(2)r=0 (iv) px^(2)+qx-r=0