If `vecP=3hati+4hatj+12hatk` then find magnitude and the direction cosines of the `vecP`.
Text Solution
Verified by Experts
magnitude `vecP` is `=sqrt(P_(x)^(2)+P_(y)^(2)+P_(z)^(2))=sqrt(3^(2)+4^(2)+12^(2))=sqrt(169)=13` (ii) `cos alpha =(P_(x))/(P)=(3)/(13), cos beta=(P_(y))/(P)=(4)/(13), cos lambda=(P_(z))/(P)=(12)/(13)`
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise EXERCISE-1|128 Videos
BASIC MATHS
ALLEN|Exercise EXERCISE-2|80 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
If vecP = 3hati+ 4hatj + 12hatk then find magnitude and the direction cosines of vecP .
If vecP=3hati+4hatj+12hatk then find (i) |vecP| and (ii) the direction cosines of the vecP .
Find the direction cosines of the vector: hati+2hatj+6hatk
Find the direction cosines of the vector 2hati+2hatj-hatk
Find magnitude and direction cosines of the vector, A= (3hati - 4hatj+5hatk).
If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .
(i) Find the unit vector in the direction of veca+vecb if veca=2hati-hatj+2hatk , and vecb=-hati+hatj-hatk (ii) Find the direction ratios and direction cosines of the vector veca=5hati+3hatj-4hatk .
If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk and vec(PQ) and the direction cosines of vec(PQ) .
Find the direction cosines of the vector hati+2hatj+3hatk .
Find the direction cosines of the vector hati+2hatj+3hatk .