If `vecA=2hati-2hatj-hatk` and `vecB=hati+hatj`, then : (a) Find angle between `vecA` and `vecB`. (b) Find the projection of resultant vector of `vecA` and `vecB` on x-axis. (c) Find a vector which is, if added to `vecA, gives a unit vector along y-axis.
Text Solution
Verified by Experts
(a) Let the angle between `vecA` and `vecB` is `theta`, then `cos theta=(vecA.vecB)/(AB)=((2hati-2hatj-hatk).(hati+hatj))/(|2hati+2hatj-hatk|.|hati+hatj|)=(0)/(3sqrt(2))=0rArrtheta=90^(@)` (b) Resultant `(vecR)=vecA+vecB=(2hati-2hatj-hatk)+(hati+hatj)=3hati-hatj-hatk therefore` projection of resultant on x-axis =3 (c) Required vector `=hatj-vecA=hatj-(2hati-2hatj-hatk)=-2hati+3hatj+hatk`
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise EXERCISE-1|128 Videos
BASIC MATHS
ALLEN|Exercise EXERCISE-2|80 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
vecA=4hati+4hatj-4hatk and vecB=3hati+hatj+4hatk , then angle between vectors vecA and vecB is
If vecA = hati + 2hatj - hatk , vecB = - hati + hatj - 2hatk , then angle between vecA and vecB is
If vecA=2hati-3hatj+hatk and vecB=3hati+2hatj. Find vecA.vecB and vecAxxvecB
If veca=2hati+3hatj+6hatk and vecb=6hati+3hatj-2hatk , find the angle, between vectors veca and vecb . Also find unit vector perpendicular to both veca and vecb
If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb
If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .
If vecA = 3hati + 4hatj and vecB = hati + hatj + 2hatk then find out unit vector along vecA + vecB .
If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .