Home
Class 12
PHYSICS
Mathc list I with II and select the corr...

Mathc list I with II and select the correct answer :
`{:((A)"spring constant",(1)M^(1)L^(2)T^(-2)),((B)"pascal",(2)M^(0)L^(0)T^(-1)),((C)"hertz",(3)M^(1)L^(0)T^(-2)),((D)"joule",(4)M^(1)L^(-1)T^(-2)):}`

A

`{:(A,B,C,D),(3,4,2,1):}`

B

`{:(A,B,C,D),(4,3,1,2):}`

C

`{:(A,B,C,D),(4,3,2,1):}`

D

`{:(A,B,C,D),(3,4,1,2):}`

Text Solution

Verified by Experts

Spring constant,
`F=Kx spring K=(F)/(x)=(M^(1)L^(1)T^(-2))/(L^(2))=M^(1)L^(-1)T^(-2)`
hertz`=(1)/(T)=M^(0)L^(0)T^(-1)`
joule=energy `-M^(1)L^(2)T^(-2)`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Dimensions of epsilon_(0) are M^(-1)L^(-3)T^(4)A^(2) M^(0)L^(-3)T^(3)A^(3) M^(-1)L^(-3)T^(3)A M^(-1)L^(-3)TA^(2)

Match List-I with List-II : List-I: {:(,"List-I", ,"List-II"),((a),"h(Plank's constant)",(i),[M LT^(-1)]),((b),"E(Kinetic energy)",(ii),[M L^(2)T^(-1)]),((c),"V(elecic potential)",(iii),[M L^(2)T^(-2)]),((d),"P(linear momentum)",(iv),[ML^(2)I^(-1)T^(-3)]):} Choose the correct answer from the options given below :

Match the physical quantities given in Column 1 with dimensions expressed in terms of mass (M), length (L), time (T), and charge (Q) given n column II. {:(,"Column-I",,"Column-II"),((a),"Angular momentum",(p),[ML^(2)T^(-2)]),((b),"Torque",(q),[ML^(2)T^(-1)]),((c),"Inductance",(r),[M^(-1)L^(-2)T^(2)Q^(2)]),((d),"Latent heat",(s),[ML^(2)Q^(-2)]),((e),"Capacitance",(t),[ML^(3)T^(-1)Q^(-2)]),((f),"Resistivity",(u),[L^(2)T^(-2)]):}

Match the following: {:(," ""Column-I",," ""Column-II"),((a),F = A sin(B t) + (1)/(C ln (Dx)) "For above equation to be dimensionally correct",(p),[A] = [M^(1)L^(1)T^(-1)]","[B] = [M^(0)L^(0)T^(-1)]","[C] = [M^(0)L^(0)T^(-1)]),((b) ,"Pressure" = P + (1)/(2)rhov^(2) + gX ,(q),[A] = [M^(0)L^(1)T^(-1)]"," [B] = [M^(0)L^(0)T^(-1)]","[C] = [M^(0)L^(0)T^(-1)]","),((c),X = At+(v)/(B ln(Cr)),(r),[A] = [M^(1)L^(1)T^(-2)]","[B] = [M^(0)L^(0)T^(-1)]","[C] = [M^(-1)L^(0)T^(1)]),(,,(s),"Dimensionally incorrect""):} (Where F = force, P = pressure, rho = density, t = time, v = velocity, a = acceleration, X = displacement)

The expression [M^(1)L^(2)T^(-2)] represents

Dimension of sqrt((in_(0))/(mu_(0))) are (A) [M L^(2) T^(-3) A^(-2)] (B) [M^(-1) L^(-2) T^(3) A^(2)] (C) [M^(2)L^(2)T^(-3) A^(2)] (D) [M^(-1) L^(2) T^(3) A^(2)]

Given that in (alpha//pbeta )=alphaz//K_(B)theta where p is pressure, z is distance, K_(B) is Boltzmann constant and theta is temperature, the dimension of beta are (useful formula Energy =K_(B)xx temperature) (A) L^(0)M^(0)T^(0) " " (B)L^(1)M^(-1)T^(2) " " (C)L^(2)M^(0)T^(0)" "(D)L^(-1)M^(1)T^(-2)

If E and G respectively denote energy and gravitational constant,then (E)/(G) has the dimensions of: (1) [M^(2)][L^(-2)][T^(-1)] (2) [M^(2)][L^(-1)][T^(0)] (3) [M][L^(-1)][T^(0)] (4) [M][L^(0)][T^(0)]