Home
Class 12
MATHS
If fk(x)=1/k(sin^kx+cos^kx) then f4(x)-f...

If `f_k(x)=1/k(sin^kx+cos^kx)` then `f_4(x)-f_6 (x)=` (A) `1/12` (B) `5/12` (C) `(-1)/12` (D) `-5/12`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f_k(x)=1/k(sin^k x+cos^k x) Then f_4(x)-f_6(x) =

If f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) then f_(4)(x)-f_(6)(x)=(A)(1)/(12) (B) (5)/(12) (C) (-1)/(12) (D) -(5)/(12)

Let f_K(x)""=1/k(s in^k x+cos^k x) where x in R and kgeq1 . Then f_4(x)-f_6(x) equals (1) 1/6 (2) 1/3 (3) 1/4 (4) 1/(12)

Let f_K(x)""=1/k(s in^k x+cos^k x) where x in R and kgeq1 . Then f_4(x)-f_6(x) equals (1) 1/6 (2) 1/3 (3) 1/4 (4) 1/(12)

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Let f_k(x)=(1)/(k)(sin^k x+ cos^k x) " where " x in R and k ge 1 . Then f_4(x)-f_6(x) equals

kx + 3y = 3, 12 x + k y = 6 .

If f''(x) = 12x - 6 and f(1) = 30 , f' (1) = 5 find f(x)

If f''(x) = 12 x - 6 and f(1) = 30 , f'(1) = 5 find f (x) .