Home
Class 12
MATHS
lim(nto oo) (1-1/(2^(2)))(1-1/(3^(2)))(1...

`lim_(nto oo) (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))…………….(1-1/(n^(2)))` equals:

Promotional Banner

Similar Questions

Explore conceptually related problems

The reciprocal of the value of: lim_(n->oo)(1-1/(2^2))(1-1/(3^2))(1-1/(4^2))(1-1/(n^2))i s

lim _(n to oo) ( 1/(n^(2)+1^(2)) + 1/(n^(2)+2^(2)) +...1/(2n^(2))) equals

lim_(nto oo)((1^(2))/(1-n^(3))+(2^(2))/(1-n^(3))+ . . . .+(n^(2))/(1-n^(3)))=

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(n rarr oo)(1)/(2)+(1)/(2^(2))+(1)/(2^(3))+...+(1)/(2^(n)) equals (a) 2 (b) -1 (c) 1 (d) 3

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :