Home
Class 11
MATHS
ax^(2)+bx+c,c!=0...

ax^(2)+bx+c,c!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If ax^(2) +bx +c=0 has equal roots. Then c is equal to :

If alpha,beta be the roots of ax^(2)+bx+c=0,c!=0 , alpha+beta=(-b)/(a) and alpha beta=(c)/(a) , then alpha^(3)+beta^(3)=

If alpha,beta be the roots of ax^(2)+bx+c=0,c!=0 , alpha+beta=(-b)/(a) and alpha beta=(c)/(a) ,then Q: (1)/(alpha^(2))+(1)/(beta^(2))

If the zeroes of the quadratic polynomial ax^(2) +bx +c , where c ne 0 , are equal, then

Find a quadratic polynomial whose zeros are reciprocals of the zero of the polynomial f(x)=ax^(2)+bx+c,a!=O,c!=0

If the equations ax^(2) +2bx +c = 0 and Ax^(2) +2Bx+C=0 have a common root and a,b,c are in G.P prove that a/A , b/B, c/C are in H.P

If the equations ax^(2) +2bx +c = 0 and Ax^(2) +2Bx+C=0 have a common root and a,b,c are in G.P prove that a/A , b/B, c/C are in H.P

Form the values of (1)/(alpha)+(1)/(beta) in terms of a, b, c if alpha, beta are roots of ax^(2)+bx+c=0 , c != 0