Home
Class 12
MATHS
[" If "f(x)=sin^(2)((pi)/(8)+(x)/(2))-si...

[" If "f(x)=sin^(2)((pi)/(8)+(x)/(2))-sin^(2)((pi)/(8)-(x)/(2))],[" then the period of "f" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^(2)((pi)/(8)+(x)/(2))-sin^(2)((pi)/(8)-(x)/(2)) then period of f(x) is

int[sin^(2)((9 pi)/(8)+(x)/(4))-sin^(2)((7 pi)/(8)+(x)/(4))]dx

Evaluate : sin^(2) (pi/8 +x/2) - sin^(2) (pi/8 - x/2)

int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4)]dx

int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4)]dx

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

If f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then "3f'((pi)/(4))-f((pi)/(4))=

If f(x)=cos x+sin x, find f((pi)/(2))