Home
Class 12
MATHS
Suppose n be an integer greater than 1, ...

Suppose n be an integer greater than 1, let ` a_n= 1/(log_n2002)`. Suppose `b= a_2+a_3+a_4+a_5` and `c= a_11+a_12+a_13+a_14` find the value of `(b-c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose n be an integer greater than 1 , let a_n=(1)/(log_n 2002 ) Suppose b=a_2+a_3+a_4+a_5 and c=a_(10)+a_11+a_(12)+a_(13)+a_(14) . Then |b-c| equals __________.

Suppose n be an integer greater than 1 , let a_n=(1)/(log_n 2002 ) Suppose b=a_2+a_3+a_4+a_5 and c=a_(10)+a_11+a_(12)+a_(13)+a_(14) . Then |b-c| equals __________.

Len n be an integer greater than 1 and let a_(n)=(1)/(log_(n)1001). If b=a_(3)+a_(4)+a_(5)+a_(6)and c=_(11)+a_(12)+a_(13)+a_(14)+a_(15). Than value of (b-c) is equal to

Len n be an integer greater than 1 and let a_(n)=(1)/(log_(n)1001). If b=a_(3)+a_(4)+a_(5)+a_(6)and c=_(11)+a_(12)+a_(13)+a_(14)+a_(15). Than value of (b-c) is equal to

If a_n = (a_(n-1) xx a_(n-2))/(2), a_5 = -6 and a_6 = -18 , what is the value of a_3 ?

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to