Home
Class 12
MATHS
The value of a for which lim(x->0)(e^x-1...

The value of a for which `lim_(x->0)(e^x-1)^4/sin(x^2/a^2)log_e{1+x^2/2}=8` ,is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) (e^(x^2) - 1)/sin^2x

The value of lim_(x->0)(e^(x^2)-e^x+x)/(1-cos2x) is

The value of lim_(x to 0) ((e^x-1)log(1+x))/sin^2x is equal to

lim_(x to 0)(e^(2x)-1)/(sin 3x) = ?

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))

Find the value of a if, lim_(xto2)log_e(2x-3)/(a(x-2))=1

Evaluate: lim_(x-0)((e^x-1)log_5(1+5x))/(sin^2x)

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

The value of lim_(x to 0) (27^(x)-9^(x)-3^(x)+1)/(log_(e)(1+(x^(2))/(2))) is equal to -

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is