Home
Class 12
PHYSICS
Using the expression 2d sin theta = lamb...

Using the expression `2d sin theta = lambda`, one calculates the values of `d` by measuring the corresponding angles `theta` in the range `0 to 90@`. The wavelength `lambda` is exactly known and error in `theta` is constant for all values of `theta`. As `theta` increases from `0@`

A

the absolute error in `d` remains constant.

B

the absolute error in `d` increses.

C

the fractional error in `d` remains constant.

D

the fractional error in `d` decreases.

Text Solution

Verified by Experts

The correct Answer is:
D

`2d sintheta=lambda`
`d=(lambda)/(2 sin theta)`
differntiate
`del(d)=(lambda)/(2) del (cosectheta)`
`del(d)=(lambda)/(2)(-cos esthetacottheta)deltheta`
`del(d)=(-lambdacostheta)/(2sin^(2)theta)deltheta`
as `theta= "increases", (lambdacostheta)/(2sin^(2)theta) , "decreases"`
Alternate solution
`d=(lambda)/(2sintheta)`
`ln d=ln lambda-ln2-ln sintheta`
`(Delta(d))/(d)=0-0-(1)/(sin theta)xxcostheta(Deltatheta)`
Fraction error `|+(d)|=|cotthetaDeltatheta|`
Absoulute error `Deltad=(dcottheta)Deltatheta`
`(d)/(2sintheta)xx(costheta)/(sintheta)`
`Deltad=(costheta)/(sin^(2)theta)`
Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    RESONANCE|Exercise Exercise-3 (Part-2)|15 Videos
  • WAVE OPTICS

    RESONANCE|Exercise Exercise-3 (Part-3)|22 Videos
  • WAVE OPTICS

    RESONANCE|Exercise Exercise-2 (Part-4)|8 Videos
  • WAVE ON STRING

    RESONANCE|Exercise Exercise- 3 PART I|19 Videos

Similar Questions

Explore conceptually related problems

sin90^(@)=sin theta Find all the possible values of theta.

If A= cos theta + 2 sqrt(2) sin theta , then for all real values of theta Find range of A

if sin theta cos theta=5, then let us write by calculating,the value of (sin theta+cos theta)

If sin^2 theta = 1+cos^6 theta then number of values of theta in range (0, 2pi) is

Find all the value of theta satisfying the equation , sin 7 theta = sin theta + sin 3 theta such that 0 le theta le pi

What is the value of sec^2 theta, if sin theta - cos theta = 0 ?

As theta increases from 0^(@) to 90^(@) , the value of cos theta is

If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@) ,then the value of sin theta + cos theta is:

The values of theta satisfying sin5 theta=sin3 theta-sin theta and 0