Home
Class 11
MATHS
if (a^(2) +2bc) ,( b^(2) +2ac) ,(c^(2) ...

if ` (a^(2) +2bc) ,( b^(2) +2ac) ,(c^(2) +2ab) ` are in AP, show that
`1 / (( b-c)) ,1/((c -a)) , 1/ ((a-b)) are in AP.

Promotional Banner

Similar Questions

Explore conceptually related problems

if (b-c)^(2) , (c-a)^(2) ,(a-b)^(2) are in AP, prove that 1/((b-c)) ,1/(( c-a)) ,1 /((a-b)) are in AP.

If a^(2) + 2bc, b^(2) + 2ac, c^(2) + 2ab are in A.P then prove that (1)/(b-c), (1)/(c-a) and (1)/(a-b) are in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P. show that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

(a) If a^(2)+2bc,b^(2)+2ac,c^(2)+2ab are in A.P ., show that (1)/(b-c),(1)/(c-a),(1)/(a-b) are in A.P . (b) Prove that the sum to n terms of the series 11+103+1005+…. = (10)/(9)(10^(n)-1)+n^(2) .

If (b-c)^(2),(c-a)^(2),(a-b)^(2) are in A.P.then show that (1)/(b-c),(1)/(c-a),(1)/(a-b) are in A.P.

If (a-c)^2,(c-a)^2,(a-b)^2 are in A.P.,prove that 1/(b-c),1/(c-a),1/(a-b) are in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.