Home
Class 12
MATHS
If ((1+i)/(1-i))^((m)/(2))=((1+i)/(1-i))...

If `((1+i)/(1-i))^((m)/(2))=((1+i)/(1-i))^((n)/(3))=1, (m, ninN)` then the greatest common divisor of the least values of m and n is .............

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation step by step. The equation is: \[ \left(\frac{1+i}{1-i}\right)^{\frac{m}{2}} = \left(\frac{1+i}{1-i}\right)^{\frac{n}{3}} = 1 \] ### Step 1: Simplify \(\frac{1+i}{1-i}\) To simplify \(\frac{1+i}{1-i}\), we can multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} \] Calculating the numerator: \[ (1+i)(1+i) = 1 + 2i + i^2 = 1 + 2i - 1 = 2i \] Calculating the denominator: \[ (1-i)(1+i) = 1 - i^2 = 1 - (-1) = 2 \] Thus, we have: \[ \frac{1+i}{1-i} = \frac{2i}{2} = i \] ### Step 2: Substitute back into the equation Now substituting back into the original equation, we get: \[ i^{\frac{m}{2}} = 1 \quad \text{and} \quad i^{\frac{n}{3}} = 1 \] ### Step 3: Determine the conditions for \(i^k = 1\) The powers of \(i\) cycle every 4: \[ i^0 = 1, \quad i^1 = i, \quad i^2 = -1, \quad i^3 = -i, \quad i^4 = 1, \ldots \] For \(i^{\frac{m}{2}} = 1\), \(\frac{m}{2}\) must be a multiple of 4: \[ \frac{m}{2} = 4k \quad \text{for some integer } k \implies m = 8k \] For \(i^{\frac{n}{3}} = 1\), \(\frac{n}{3}\) must also be a multiple of 4: \[ \frac{n}{3} = 4j \quad \text{for some integer } j \implies n = 12j \] ### Step 4: Find the least values of \(m\) and \(n\) The least value of \(m\) occurs when \(k = 1\): \[ m = 8 \cdot 1 = 8 \] The least value of \(n\) occurs when \(j = 1\): \[ n = 12 \cdot 1 = 12 \] ### Step 5: Find the greatest common divisor (GCD) Now, we need to find the GCD of the least values of \(m\) and \(n\): \[ \text{GCD}(8, 12) \] The factors of 8 are \(1, 2, 4, 8\) and the factors of 12 are \(1, 2, 3, 4, 6, 12\). The common factors are \(1, 2, 4\), so the GCD is: \[ \text{GCD}(8, 12) = 4 \] ### Final Answer The greatest common divisor of the least values of \(m\) and \(n\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^(m/2)=((1+i)/(-1+i))^(n/3)=1 . Find the G.C.D. of m,n

If ((1+i)/(1-i))^(n) = -1, n in N , then least value of n is

If ((1+i)/(1-i))^(m)=1, then find the least positive integral value of m.

If ((1+i)/(1-i))^(m)=1, then find the least integral value of m

If ((1+i)/(1-i))^(m)=1 then find the least integral value of m

If i^(2)=-1 and ((1+i)/(sqrt2))^(n)=((1-i)/(sqrt2))^(m)=1, AA n, m in N , then the minimum value of n+m is equal to

(tan^(-1)((1)/(3))+tan^(-1)((1)/(7))+tan^(-1)((1)/(13))+......+tan^(-1)((1)/(381)))=(m)/(n) where m,n in N, then find least value of (m+n)

Write the least positive intergal value of n when ((1+i)/(1-i))^(2n) =1 .

If sum_(i=1)^(10)tan^(-1)((3)/(9r^(2)+3r-1))=cot^(-1)((m)/(n)) (where m and n are coprime) then the value of (2m+n)/(8) is

If |z-i|le5andz_(1)=5+3i("where",i=sqrt(-1), the greatest and least values of |iz+z_(1)| are

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. The value of (0.16)^("log"(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + ...

    Text Solution

    |

  2. In the matrix A=[[x,1],[1,0]] and A^4=[[109,a(12)],[a(21),a(22)]], the...

    Text Solution

    |

  3. If ((1+i)/(1-i))^((m)/(2))=((1+i)/(1-i))^((n)/(3))=1, (m, ninN) then t...

    Text Solution

    |

  4. If y = y (x) is the solution of the differential equation (5 + e^(x))/...

    Text Solution

    |

  5. Find the product of the roots of the equation 9x^2-18|x|+5=0

    Text Solution

    |

  6. The negation of the Boolean expression x harr ~ y is equivalent to :

    Text Solution

    |

  7. The mean and variance of 7 observations are 8 and 16 , respectively . ...

    Text Solution

    |

  8. If 2^(10) + 2^(9) * 3^(1) + 2 ^(8) * 3^(2) + …. + 2 * 3^(9) + 3^(10...

    Text Solution

    |

  9. The numbers 3^(2sin2alpha-1),14and3^(4-2sin2alpha) form first three te...

    Text Solution

    |

  10. If the volume of a parallelopiped ,whose coterminus edges are given by...

    Text Solution

    |

  11. If S=tan^(-1)(1/3)+tan^(-1)(1/7)+tan^(-1)(1/13)+.... to 10 terms. Find...

    Text Solution

    |

  12. If four complex number z,bar(z),bar(z)-2Re(bar(z)) and z-2Re(z) repres...

    Text Solution

    |

  13. A survey shows that 73 % of the persons working in an office like coff...

    Text Solution

    |

  14. If the co-ordinates of two point A and B are (sqrt(7),0) and (-sqrt(7)...

    Text Solution

    |

  15. If the point P on the curve 4x^2+5y^2-20=0 is farthest from the point ...

    Text Solution

    |

  16. Let lambda in R . The system of linear equations 2x(1) - 4x(2) + lam...

    Text Solution

    |

  17. If min and max value of the function f:[pi/4,pi/2] to R, f(theta)=|[-s...

    Text Solution

    |

  18. If (a,b,c) is the image of the point (1,2,-3) in the line (x+1)/2=(y-3...

    Text Solution

    |

  19. If function f(x)={(k1(x-pi)^2-1,xlepi),(k2cosx,xgtpi):} is twice diffe...

    Text Solution

    |

  20. If common tangent to parabola y^2=4x and x^2=4y also touches the circl...

    Text Solution

    |