Home
Class 12
MATHS
Let lambda in R . The system of linear e...

Let `lambda in R `. The system of linear equations
`2x_(1) - 4x_(2) + lambda x_(3) = 1`
`x_(1) -6x_(2) + x_(3) = 2`
`lambda x_(1) - 10x_(2) + 4 x_(3) = 3`
is inconsistent for :

A

exactly one negative value of `lambda`

B

exactly one positive value of `lambda`

C

every value of `lambda`

D

exactly two values of `lambda`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( \lambda \) for which the given system of linear equations is inconsistent, we need to analyze the system of equations: 1. \( 2x_1 - 4x_2 + \lambda x_3 = 1 \) 2. \( x_1 - 6x_2 + x_3 = 2 \) 3. \( \lambda x_1 - 10x_2 + 4x_3 = 3 \) ### Step 1: Formulate the Coefficient Matrix and Find the Determinant The coefficient matrix \( A \) for the system is: \[ A = \begin{bmatrix} 2 & -4 & \lambda \\ 1 & -6 & 1 \\ \lambda & -10 & 4 \end{bmatrix} \] To find when the system is inconsistent, we need to compute the determinant of this matrix and set it equal to zero: \[ \text{det}(A) = \begin{vmatrix} 2 & -4 & \lambda \\ 1 & -6 & 1 \\ \lambda & -10 & 4 \end{vmatrix} \] ### Step 2: Calculate the Determinant Using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] We can compute: \[ \text{det}(A) = 2((-6)(4) - (1)(-10)) - (-4)((1)(4) - (1)(\lambda)) + \lambda((1)(-10) - (-6)(\lambda)) \] Calculating each term: 1. \( 2((-24) + 10) = 2(-14) = -28 \) 2. \( -4(4 - \lambda) = -16 + 4\lambda \) 3. \( \lambda(-10 + 6\lambda) = -10\lambda + 6\lambda^2 \) Putting it all together: \[ \text{det}(A) = -28 + 4\lambda - 16 + 4\lambda + 6\lambda^2 \] \[ = 6\lambda^2 + 8\lambda - 44 \] ### Step 3: Set the Determinant to Zero Now, we set the determinant equal to zero: \[ 6\lambda^2 + 8\lambda - 44 = 0 \] ### Step 4: Solve the Quadratic Equation Dividing the entire equation by 2 for simplicity: \[ 3\lambda^2 + 4\lambda - 22 = 0 \] Using the quadratic formula \( \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ \lambda = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 3 \cdot (-22)}}{2 \cdot 3} \] \[ = \frac{-4 \pm \sqrt{16 + 264}}{6} \] \[ = \frac{-4 \pm \sqrt{280}}{6} \] \[ = \frac{-4 \pm 2\sqrt{70}}{6} \] \[ = \frac{-2 \pm \sqrt{70}}{3} \] ### Step 5: Identify Values of \( \lambda \) The solutions for \( \lambda \) are: \[ \lambda_1 = \frac{-2 + \sqrt{70}}{3}, \quad \lambda_2 = \frac{-2 - \sqrt{70}}{3} \] ### Conclusion The system of equations is inconsistent for the values of \( \lambda \) that satisfy the determinant being zero, which are: \[ \lambda = \frac{-2 + \sqrt{70}}{3} \quad \text{and} \quad \lambda = \frac{-2 - \sqrt{70}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

Let lambda in R , the system of linear equation 2x_1-4x_2+lambdax_3=1 x_1-6x_2+x_3=2 lambda x_1-10x_2+4x_3=3 is inconsistant. Find the value of lambda .

The set of all values of lambda for which the system of linear equations: 2x_(1)-2x_(2)+x_(3)=lambda x_(1)2x_(1)-3x_(2)+2x_(3)=lambda x_(2) has a non-trivial solution,(1) is an empty set (2) is a singleton ( 3) contains two elements (4) contains more than two elements

Solve the following linear system of equations x_(1)+x_(2)+x_(3)=3,4x_(1)+3x_(2)+4x_(3)=8,9x_(1)+3x_(2)+4x_(3)=7 using the Gauss elimination method.

The equation (x^(2)-6x+8)+lambda (x^(2)-4x+3)=0, lambda in R has

The sum of distinct value of lambda for which the system of equations (lambda -1 )x + (3lambda + 1) y + 2 lambda x= 0 (lambda -1) x + (4lambda - 2) y + (lambda + 3) x= 0 2x + (2lambda + 1) y + 3(lambda - 1) z=0 has non - zeor solutions is ______.

Roots of the equation (x^(2)-4x+3)+lambda(x^(2)-6x+8)=0lambda in R will be

If x_(1)+x_(2)=(pi)/(2) and x_(2)+x_(3)=x_(1), then tan x_(1)=tan x_(2)+lambda tan x_(3) where lambda is equal to

The number of real roots of the equation 4x^(3)-x^(2)+lambda^(2)x-mu=0 , mu in R, lambda > 1 is

Find the value of lambda for which equation 3x^(4)-8x^(3)-6x^(2)+24x=lambda has

If alpha,beta be the roots of the equation 4x^(2)-16x+lambda=0 where lambda in R such that 1

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. If the co-ordinates of two point A and B are (sqrt(7),0) and (-sqrt(7)...

    Text Solution

    |

  2. If the point P on the curve 4x^2+5y^2-20=0 is farthest from the point ...

    Text Solution

    |

  3. Let lambda in R . The system of linear equations 2x(1) - 4x(2) + lam...

    Text Solution

    |

  4. If min and max value of the function f:[pi/4,pi/2] to R, f(theta)=|[-s...

    Text Solution

    |

  5. If (a,b,c) is the image of the point (1,2,-3) in the line (x+1)/2=(y-3...

    Text Solution

    |

  6. If function f(x)={(k1(x-pi)^2-1,xlepi),(k2cosx,xgtpi):} is twice diffe...

    Text Solution

    |

  7. If common tangent to parabola y^2=4x and x^2=4y also touches the circl...

    Text Solution

    |

  8. If alpha is a positive root of p(x)= x^2-x-2 Find lim(x rarr alpha^+) ...

    Text Solution

    |

  9. int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x)) , then fi...

    Text Solution

    |

  10. The value of underset((-pi)/(2))overset((pi)/(2))(int) (1)/(1 + e^(sin...

    Text Solution

    |

  11. Let f (x) = x . [(x)/(2)] for - 10 lt x lt 10 , where [t] denotes the ...

    Text Solution

    |

  12. If the distance of line 2x-y+3=0 from 4x-2y+p=0 and 6x-3y+r=0 is respe...

    Text Solution

    |

  13. The number of four letters word while each consisting 2 distinct and t...

    Text Solution

    |

  14. The natural number m , for which the coefficient of x in the binomial ...

    Text Solution

    |

  15. Four different dice are thrown independently 27 times, then find the e...

    Text Solution

    |

  16. If alpha and beta be two roots of the equation x^(2) -64x+ 256=0 . ...

    Text Solution

    |

  17. The area ( in sq. units ) of the region A={(x,y):|x| + |y| le 1 , 2y^(...

    Text Solution

    |

  18. Find the general solution of the differential equation sqrt(1+x^(2)...

    Text Solution

    |

  19. Let L1 be a tangent to the parabola y^(2) = 4(x+1) and L2 be a tangent...

    Text Solution

    |

  20. If f(x+y)=f(x)f(y) and sum(x=1)^(oo)f(x)=2,x,y in N, where N is the se...

    Text Solution

    |