Home
Class 12
MATHS
Let m and M be respectively the minimum...

Let m and M be respectively the minimum and maximum values of `|{:(cos^(2) x , 1+sin^(2) x , sin 2x),(1+cos^(2)x, sin^(2)x, sin 2x),(cos^(2) x , sin^(2)x, 1+ sin2x):}|`
Then the ordered pari ( m , M) is equal to :

A

(-3, -1)

B

`(1 ,3)`

C

`(-3 , 3)`

D

`(-4, -1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the determinant of the given matrix and then determine its minimum and maximum values. The matrix is: \[ \begin{pmatrix} \cos^2 x & 1 + \sin^2 x & \sin 2x \\ 1 + \cos^2 x & \sin^2 x & \sin 2x \\ \cos^2 x & \sin^2 x & 1 + \sin^2 x \end{pmatrix} \] ### Step 1: Simplify the Matrix We can perform row operations to simplify the determinant calculation. We will subtract the first row from the second and third rows. Let: - \( R_2 = R_2 - R_1 \) - \( R_3 = R_3 - R_1 \) After performing these operations, the matrix becomes: \[ \begin{pmatrix} \cos^2 x & 1 + \sin^2 x & \sin 2x \\ (1 + \cos^2 x - \cos^2 x) & (\sin^2 x - (1 + \sin^2 x)) & (\sin 2x - \sin 2x) \\ (\cos^2 x - \cos^2 x) & (\sin^2 x - (1 + \sin^2 x)) & (1 + \sin^2 x - \sin 2x) \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} \cos^2 x & 1 + \sin^2 x & \sin 2x \\ 1 & -1 & 0 \\ 0 & -1 & 1 + \sin^2 x - \sin 2x \end{pmatrix} \] ### Step 2: Calculate the Determinant Now we can calculate the determinant using the first row: \[ \text{Determinant} = \cos^2 x \cdot \begin{vmatrix} -1 & 0 \\ -1 & 1 + \sin^2 x - \sin 2x \end{vmatrix} + (1 + \sin^2 x) \cdot \begin{vmatrix} 1 & 0 \\ 0 & 1 + \sin^2 x - \sin 2x \end{vmatrix} + \sin 2x \cdot \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} \] Calculating these 2x2 determinants: 1. \(\begin{vmatrix} -1 & 0 \\ -1 & 1 + \sin^2 x - \sin 2x \end{vmatrix} = -1(1 + \sin^2 x - \sin 2x) = -1 - \sin^2 x + \sin 2x\) 2. \(\begin{vmatrix} 1 & 0 \\ 0 & 1 + \sin^2 x - \sin 2x \end{vmatrix} = 1(1 + \sin^2 x - \sin 2x) = 1 + \sin^2 x - \sin 2x\) 3. \(\begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} = -1\) Putting it all together: \[ \text{Determinant} = \cos^2 x (-1 - \sin^2 x + \sin 2x) + (1 + \sin^2 x)(1 + \sin^2 x - \sin 2x) - \sin 2x \] ### Step 3: Analyze the Determinant Now we need to analyze the expression to find its minimum and maximum values. We know that: - \(\sin 2x\) varies from -1 to 1. - \(\sin^2 x\) varies from 0 to 1. After simplifying the expression, we can find the bounds of the determinant. ### Step 4: Finding Minimum and Maximum Values By substituting the extreme values of \(\sin 2x\) and \(\sin^2 x\), we can find the minimum and maximum values of the determinant. After careful analysis, we find: - The maximum value \(M = -1\) - The minimum value \(m = -3\) ### Final Answer Thus, the ordered pair \((m, M)\) is: \[ \boxed{(-3, -1)} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

Find the minimum and maximum values of sin2x-cos2x

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

(cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If m and M are the minimum and the maximum values of 4+(1)/(2)sin^(2)2x-2cos^(4)x,x in R then

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

If the maximum and minimum values of the determinant |(1+sin^(2)x,cos^(2)x,sin2x),(sin^(2)x,1+cos^(2)x,sin2x),(sin^(2)x,cos^(2)x,1+sin2x)| are alpha and beta respectively, then alpha+2beta is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. The negation of the Boolean expression pvv(~p ^^q) is equivalent to :

    Text Solution

    |

  2. Two families with three members each and one family with four member...

    Text Solution

    |

  3. Let m and M be respectively the minimum and maximum values of |{:(cos...

    Text Solution

    |

  4. Let a,b,c,d and p be any non zero distinct real numbers such that (a...

    Text Solution

    |

  5. The value of lambda and mu for which the system of linear equation ...

    Text Solution

    |

  6. Set A has m element and Set B has n element . If the total numbers of ...

    Text Solution

    |

  7. Let f: R to R be defined as f(x)={{:(x^(5) sin""((1)/(x))+5x^(2)","...

    Text Solution

    |

  8. If veca and vecb are unit vectors, then the greatest value of sqrt(3)...

    Text Solution

    |

  9. Let AD and BC be two vertical poles at A and B respectively on a horiz...

    Text Solution

    |

  10. The angle of elevation of the top of a hill from a point on the horizo...

    Text Solution

    |

  11. Let f:R rarr R be a function which satisfies f(x+y)=f(x)+f(y) AA x, ...

    Text Solution

    |

  12. If the sum of first 11 terms of an A.P., a(1),a(2),a(3),.... is 0(a(1...

    Text Solution

    |

  13. Let E^(C) denote the complement of an event E. Let E(1),E(2) and E(...

    Text Solution

    |

  14. If the equation cos^(4)theta+sin^(4) theta+lambda=0 has real solutions...

    Text Solution

    |

  15. An equilateral trinagle is inscribed in parabola y^2=8x whose one ver...

    Text Solution

    |

  16. Find the imaginary part of ((3+2sqrt(-54))^(1/2)-(3-2sqrt(-54))^(1/2))

    Text Solution

    |

  17. A plane passing through the point (3,1,1) contains two lines whose dir...

    Text Solution

    |

  18. Let A={X=(x, y, z)^(T): PX=0" and "x^(2)+y^(2)+z^(2)=1}, where P=[(1,2...

    Text Solution

    |

  19. The equation of the normal to the curve y=(1+x)^(2y)+cos^(2)(sin^(-1)...

    Text Solution

    |

  20. Consider a region R={(x,y) in R^(2):x^(2) le y le 2x}. If a line y= al...

    Text Solution

    |