Home
Class 12
MATHS
Let A={X=(x, y, z)^(T): PX=0" and "x^(2)...

Let `A={X=(x, y, z)^(T): PX=0" and "x^(2)+y^(2)+z^(2)=1}`, where `P=[(1,2,1),(-2,3,-4),(1,9,-1)]`, then the set A:

A

contains more than two elements

B

is a singleton.

C

contains exactly two elements

D

is an empty set.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the set \( A \) defined by the conditions \( PX = 0 \) and \( x^2 + y^2 + z^2 = 1 \), where \( P \) is given as: \[ P = \begin{pmatrix} 1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & -1 \end{pmatrix} \] Let \( X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \). ### Step 1: Set up the equations from \( PX = 0 \) We can express the equation \( PX = 0 \) as follows: \[ \begin{pmatrix} 1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] This results in the following system of linear equations: 1. \( x + 2y + z = 0 \) (Equation 1) 2. \( -2x + 3y - 4z = 0 \) (Equation 2) 3. \( x + 9y - z = 0 \) (Equation 3) ### Step 2: Solve the system of equations We can solve these equations to express \( x, y, z \) in terms of a parameter. From Equation 1, we can express \( z \) in terms of \( x \) and \( y \): \[ z = -x - 2y \] Substituting \( z \) into Equation 2: \[ -2x + 3y - 4(-x - 2y) = 0 \] \[ -2x + 3y + 4x + 8y = 0 \] \[ 2x + 11y = 0 \implies x = -\frac{11}{2}y \] Now substituting \( x \) back into the expression for \( z \): \[ z = -\left(-\frac{11}{2}y\right) - 2y = \frac{11}{2}y - 2y = \frac{11}{2}y - \frac{4}{2}y = \frac{7}{2}y \] Now we have: \[ x = -\frac{11}{2}y, \quad z = \frac{7}{2}y \] ### Step 3: Substitute into the sphere equation Now we substitute \( x \), \( y \), and \( z \) into the equation \( x^2 + y^2 + z^2 = 1 \): \[ \left(-\frac{11}{2}y\right)^2 + y^2 + \left(\frac{7}{2}y\right)^2 = 1 \] Calculating each term: \[ \frac{121}{4}y^2 + y^2 + \frac{49}{4}y^2 = 1 \] Combining terms: \[ \left(\frac{121}{4} + 1 + \frac{49}{4}\right)y^2 = 1 \] \[ \left(\frac{121 + 4 + 49}{4}\right)y^2 = 1 \] \[ \left(\frac{174}{4}\right)y^2 = 1 \implies \frac{87}{2}y^2 = 1 \implies y^2 = \frac{2}{87} \] ### Step 4: Find \( y, x, z \) Now we can find \( y \): \[ y = \pm \sqrt{\frac{2}{87}} \] Then substituting back to find \( x \) and \( z \): \[ x = -\frac{11}{2}y = -\frac{11}{2}\left(\pm \sqrt{\frac{2}{87}}\right) = \mp \frac{11\sqrt{2}}{2\sqrt{87}} \] \[ z = \frac{7}{2}y = \frac{7}{2}\left(\pm \sqrt{\frac{2}{87}}\right) = \pm \frac{7\sqrt{2}}{2\sqrt{87}} \] ### Step 5: Conclusion Thus, the set \( A \) consists of the points \( (x, y, z) \) that satisfy the equations derived above, leading to infinitely many solutions parameterized by \( y \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+z^(2)=1 , where x,y,z in R^(+) then greatest value of x^(2)y^(3)z^(4) is

Lines (x-1)/1 = (y-1)/2 = (z-3)/0 and (x-2)/0 = (y-3)/0 = (z-4)/1 are

If (x+ y-z -1)^(2) + (z+ x-y - 2)^(2) + (z+y-x-4)^(2)=0 find x+ y+z =?

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

Prove that : =2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Use product [{:(1,-1,2),(0,2,-3),(3,-2,4):}][{:(-2,0,1),(9,2,-3),(6,1,-2):}] to solve the equations : x-3z=9 , -x+2y-2z=4 , 2x-3y+4z=-3

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. Find the imaginary part of ((3+2sqrt(-54))^(1/2)-(3-2sqrt(-54))^(1/2))

    Text Solution

    |

  2. A plane passing through the point (3,1,1) contains two lines whose dir...

    Text Solution

    |

  3. Let A={X=(x, y, z)^(T): PX=0" and "x^(2)+y^(2)+z^(2)=1}, where P=[(1,2...

    Text Solution

    |

  4. The equation of the normal to the curve y=(1+x)^(2y)+cos^(2)(sin^(-1)...

    Text Solution

    |

  5. Consider a region R={(x,y) in R^(2):x^(2) le y le 2x}. If a line y= al...

    Text Solution

    |

  6. Let f:(-1,oo) rarr R be defined by f(0)=1 and f(x)=1/x log(e)(1+x), x ...

    Text Solution

    |

  7. Which of the following is a tautology?

    Text Solution

    |

  8. If f(x) be a quadratic polynomial such that f(x)=0 has a root 3 and f(...

    Text Solution

    |

  9. Let S be the sum of the first 9 terms of the series : {x+ka}+{x^(2)...

    Text Solution

    |

  10. The set of all possible values of theta in the interval (0,pi) for wh...

    Text Solution

    |

  11. There are n stations in a circular path.Two consecutive stations are c...

    Text Solution

    |

  12. If a curve y=f(x) satisfy the differential equation 2x^2dy=(2xy+y^2)dx...

    Text Solution

    |

  13. If x^2-y^2sec^2theta=10 be a hyperbola and x^2sec^2theta+y^2=5 be an e...

    Text Solution

    |

  14. Find ("lim")(xvec0){tan(pi/4+x)}^(1//x)

    Text Solution

    |

  15. Let a, b, c in R be all non-zero and satisfy a^(3)+b^(3)+c^(3)=2. If ...

    Text Solution

    |

  16. Let the position vectors of points ‘A’ and ‘B’ be hat(i)+hat(j) + hat...

    Text Solution

    |

  17. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  18. If y=sum(k=1)^6 K cos^(-1)(3/5coskx-4/5sinkx) then (dy)/(dx)=

    Text Solution

    |

  19. If the variance of the terms in an increasing A.P., b(1),b(2), b(3), ...

    Text Solution

    |

  20. For a positive integer n, (1+1/x)^(n) is expanded in increasing pow...

    Text Solution

    |