Home
Class 12
MATHS
Let f:(-1,oo) rarr R be defined by f(0)=...

Let `f:(-1,oo) rarr R` be defined by `f(0)=1` and `f(x)=1/x log_(e)(1+x), x !=0`. Then the function f:

A

increases in `(–1, oo) `

B

decreases in (–1,0) and increases in `(0, oo)`

C

increases in (–1,0) and decreases in `(0, oo)`

D

decreases in `(-1, oo)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} 1 & \text{if } x = 0 \\ \frac{1}{x} \log(1+x) & \text{if } x \neq 0 \end{cases} \] We want to determine the behavior of this function on the interval \( (-1, \infty) \). ### Step 1: Find the derivative of \( f(x) \) For \( x \neq 0 \), we will differentiate \( f(x) = \frac{1}{x} \log(1+x) \). We can use the quotient rule for differentiation. Let \( u = \log(1+x) \) and \( v = x \). Then, \[ f'(x) = \frac{u'v - uv'}{v^2} \] Calculating \( u' \) and \( v' \): - \( u' = \frac{1}{1+x} \) - \( v' = 1 \) Now substituting these into the quotient rule: \[ f'(x) = \frac{\frac{1}{1+x} \cdot x - \log(1+x) \cdot 1}{x^2} \] This simplifies to: \[ f'(x) = \frac{x}{x(1+x)} - \frac{\log(1+x)}{x^2} = \frac{1}{1+x} - \frac{\log(1+x)}{x^2} \] ### Step 2: Analyze the sign of \( f'(x) \) To determine where \( f'(x) \) is positive or negative, we need to analyze the expression: \[ f'(x) = \frac{1}{1+x} - \frac{\log(1+x)}{x^2} \] We will check the sign of \( f'(x) \) in two intervals: \( (-1, 0) \) and \( (0, \infty) \). ### Step 3: Check the interval \( (0, \infty) \) Let's evaluate \( f'(x) \) at a point in this interval, say \( x = \frac{1}{2} \): \[ f'\left(\frac{1}{2}\right) = \frac{1}{1+\frac{1}{2}} - \frac{\log(1+\frac{1}{2})}{\left(\frac{1}{2}\right)^2} \] Calculating this gives: \[ f'\left(\frac{1}{2}\right) = \frac{1}{\frac{3}{2}} - \frac{\log\left(\frac{3}{2}\right)}{\frac{1}{4}} = \frac{2}{3} - 4 \log\left(\frac{3}{2}\right) \] Since \( \log\left(\frac{3}{2}\right) \) is positive, we can estimate \( 4 \log\left(\frac{3}{2}\right) \) and find that \( f'\left(\frac{1}{2}\right) < 0 \). Thus, \( f(x) \) is decreasing on \( (0, \infty) \). ### Step 4: Check the interval \( (-1, 0) \) Now, let's evaluate \( f'(x) \) at a point in this interval, say \( x = -\frac{1}{2} \): \[ f'\left(-\frac{1}{2}\right) = \frac{1}{1-\frac{1}{2}} - \frac{\log\left(1-\frac{1}{2}\right)}{\left(-\frac{1}{2}\right)^2} \] Calculating this gives: \[ f'\left(-\frac{1}{2}\right) = \frac{1}{\frac{1}{2}} - \frac{\log\left(\frac{1}{2}\right)}{\frac{1}{4}} = 2 + 4 \cdot 0.693 \] Since \( \log\left(\frac{1}{2}\right) \) is negative, we find that \( f'\left(-\frac{1}{2}\right) > 0 \). Thus, \( f(x) \) is increasing on \( (-1, 0) \). ### Conclusion From our analysis, we find that: - \( f(x) \) is increasing on \( (-1, 0) \) - \( f(x) \) is decreasing on \( (0, \infty) \) Thus, the correct option is that \( f(x) \) is decreasing on \( (0, \infty) \) and increasing on \( (-1, 0) \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

Let f:(e,oo)rarr R be defined by f(x)=ln(ln(In x)), then

f:(-oo,oo)rarr(0,1] defined by f(x)=(1)/(x^(2)+1) is

Let f:(-oo,-1)rarr R-{1} is defined as f(x)=(x)/(x+1) Find f^(-1)(x)

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)

Let f:R rarr R, f(x)=x+log_(e)(1+x^(2)) . Then

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

Let f(0,oo) rarr (-oo,oo) be defined as f(x)=e^(x)+ln x and g=f^(-1) , then find the g'(e) .

Let f:R rarr R be the function defined by f(x)=x^(3)+5 then f^(-1)(x) is

Let f:R rarr R be defined by f(x)={x+2x^(2)sin((1)/(x)) for x!=0,0 for x=0 then

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. The equation of the normal to the curve y=(1+x)^(2y)+cos^(2)(sin^(-1)...

    Text Solution

    |

  2. Consider a region R={(x,y) in R^(2):x^(2) le y le 2x}. If a line y= al...

    Text Solution

    |

  3. Let f:(-1,oo) rarr R be defined by f(0)=1 and f(x)=1/x log(e)(1+x), x ...

    Text Solution

    |

  4. Which of the following is a tautology?

    Text Solution

    |

  5. If f(x) be a quadratic polynomial such that f(x)=0 has a root 3 and f(...

    Text Solution

    |

  6. Let S be the sum of the first 9 terms of the series : {x+ka}+{x^(2)...

    Text Solution

    |

  7. The set of all possible values of theta in the interval (0,pi) for wh...

    Text Solution

    |

  8. There are n stations in a circular path.Two consecutive stations are c...

    Text Solution

    |

  9. If a curve y=f(x) satisfy the differential equation 2x^2dy=(2xy+y^2)dx...

    Text Solution

    |

  10. If x^2-y^2sec^2theta=10 be a hyperbola and x^2sec^2theta+y^2=5 be an e...

    Text Solution

    |

  11. Find ("lim")(xvec0){tan(pi/4+x)}^(1//x)

    Text Solution

    |

  12. Let a, b, c in R be all non-zero and satisfy a^(3)+b^(3)+c^(3)=2. If ...

    Text Solution

    |

  13. Let the position vectors of points ‘A’ and ‘B’ be hat(i)+hat(j) + hat...

    Text Solution

    |

  14. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  15. If y=sum(k=1)^6 K cos^(-1)(3/5coskx-4/5sinkx) then (dy)/(dx)=

    Text Solution

    |

  16. If the variance of the terms in an increasing A.P., b(1),b(2), b(3), ...

    Text Solution

    |

  17. For a positive integer n, (1+1/x)^(n) is expanded in increasing pow...

    Text Solution

    |

  18. If the system of linear equations x + y + 3z = 0 x + 3y + k^2 z ...

    Text Solution

    |

  19. If alpha and beta are the roots of the equation, 7x^2 -3x -2 = 0 , the...

    Text Solution

    |

  20. If x = 1 is a critical point of the function f(x) = (3x^2 + ax -2 - a...

    Text Solution

    |