Home
Class 12
MATHS
Let the position vectors of points ‘A’ a...

Let the position vectors of points ‘A’ and ‘B’ be `hat(i)+hat(j) + hat(k)` and `2hat(i)+hat(j)+3hat(k)`, respectively. A point ‘P’ divides the line segment AB internally in the ratio `lambda:1(lambda gt 0)`. If O is the origin and `vec(OB).vec(OP)-3|vec(OA)xx vec(OP)|^(2)=6`, then `lambda` is equal to ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Identify the position vectors**: - Let the position vector of point A be \(\vec{OA} = \hat{i} + \hat{j} + \hat{k}\). - Let the position vector of point B be \(\vec{OB} = 2\hat{i} + \hat{j} + 3\hat{k}\). 2. **Find the position vector of point P**: - Point P divides the line segment AB in the ratio \(\lambda:1\). By the section formula, the position vector of point P, \(\vec{OP}\), is given by: \[ \vec{OP} = \frac{\lambda \vec{OB} + 1 \cdot \vec{OA}}{\lambda + 1} \] Substituting the vectors: \[ \vec{OP} = \frac{\lambda(2\hat{i} + \hat{j} + 3\hat{k}) + (\hat{i} + \hat{j} + \hat{k})}{\lambda + 1} \] Simplifying this: \[ \vec{OP} = \frac{(2\lambda + 1)\hat{i} + (\lambda + 1)\hat{j} + (3\lambda + 1)\hat{k}}{\lambda + 1} \] 3. **Calculate \(\vec{OB} \cdot \vec{OP}\)**: - We need to compute \(\vec{OB} \cdot \vec{OP}\): \[ \vec{OB} \cdot \vec{OP} = (2\hat{i} + \hat{j} + 3\hat{k}) \cdot \left(\frac{(2\lambda + 1)\hat{i} + (\lambda + 1)\hat{j} + (3\lambda + 1)\hat{k}}{\lambda + 1}\right) \] Calculating the dot product: \[ = \frac{1}{\lambda + 1} \left[ 2(2\lambda + 1) + 1(\lambda + 1) + 3(3\lambda + 1) \right] \] Simplifying: \[ = \frac{1}{\lambda + 1} \left[ 4\lambda + 2 + \lambda + 1 + 9\lambda + 3 \right] = \frac{14\lambda + 6}{\lambda + 1} \] 4. **Calculate \(|\vec{OA} \times \vec{OP}|\)**: - We need to find \(|\vec{OA} \times \vec{OP}|\). Using the determinant form: \[ \vec{OA} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{OP} = \begin{pmatrix} \frac{2\lambda + 1}{\lambda + 1} \\ \frac{\lambda + 1}{\lambda + 1} \\ \frac{3\lambda + 1}{\lambda + 1} \end{pmatrix} \] The cross product can be computed using the determinant: \[ |\vec{OA} \times \vec{OP}| = \left| \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ \frac{2\lambda + 1}{\lambda + 1} & 1 & \frac{3\lambda + 1}{\lambda + 1} \end{vmatrix} \right| \] This determinant can be computed to find the magnitude. 5. **Set up the equation**: - Given the equation: \[ \vec{OB} \cdot \vec{OP} - 3|\vec{OA} \times \vec{OP}|^2 = 6 \] Substitute the expressions for \(\vec{OB} \cdot \vec{OP}\) and \(|\vec{OA} \times \vec{OP}|\) into this equation and solve for \(\lambda\). 6. **Solve for \(\lambda\)**: - Rearranging the equation will yield a quadratic equation in \(\lambda\). Solve this quadratic equation to find the value of \(\lambda\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by vec(OA) and vec(OB) as adjacent sides.

If vectors vec(a) = 3 hat(i) + hat(j) - 2 hat(k) and vec(b) = hat(i) + lambda(j) - 3 hat (k) are perpendicular to each other , find the value of lambda .

If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - lambda hat(k) are perpendicular, then what is the value of lambda ?

The position vectors of points AandB w.r.t. the origin are vec a=hat i+3hat j-2hat k ,vec b=3hat i+hat j-2hat k respectively.Determine vector vec OP which bisects angle AOB, where P is a point on AB.

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=hat(i)-2hat(j)+3hat(k) are perpendicular to each other.

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

If the vectors vec(a)=3hat(i)+hat(j)-2hatk and vec(b)=hat(i)+lambda hat(j)-3hat(k) are perpendicular to each other then lambda=?

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. Find ("lim")(xvec0){tan(pi/4+x)}^(1//x)

    Text Solution

    |

  2. Let a, b, c in R be all non-zero and satisfy a^(3)+b^(3)+c^(3)=2. If ...

    Text Solution

    |

  3. Let the position vectors of points ‘A’ and ‘B’ be hat(i)+hat(j) + hat...

    Text Solution

    |

  4. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  5. If y=sum(k=1)^6 K cos^(-1)(3/5coskx-4/5sinkx) then (dy)/(dx)=

    Text Solution

    |

  6. If the variance of the terms in an increasing A.P., b(1),b(2), b(3), ...

    Text Solution

    |

  7. For a positive integer n, (1+1/x)^(n) is expanded in increasing pow...

    Text Solution

    |

  8. If the system of linear equations x + y + 3z = 0 x + 3y + k^2 z ...

    Text Solution

    |

  9. If alpha and beta are the roots of the equation, 7x^2 -3x -2 = 0 , the...

    Text Solution

    |

  10. If x = 1 is a critical point of the function f(x) = (3x^2 + ax -2 - a...

    Text Solution

    |

  11. The area (in sq. units ) of the region A = { (x,y):(x - 1) [x] lt= y l...

    Text Solution

    |

  12. If the sum of the second , third and fourth terms of a positive term G...

    Text Solution

    |

  13. ((-1+sqrt(3)i)/(1-i))^(30) simplifies to

    Text Solution

    |

  14. If L = sin^2 ((pi)/(16)) - sin^2 ( pi/8) and M = cos^2 ( (pi)/(16...

    Text Solution

    |

  15. If a + x = b + y = c + z + 1 , where a, b,c,x,y,z are non polar distin...

    Text Solution

    |

  16. If the line y = mx + c is a common tangent to the hyperbola (x^2)/(10...

    Text Solution

    |

  17. Which of the following points lies on the tangent to the curve x^4 e^y...

    Text Solution

    |

  18. The statement (p to (q to p)) to (p to (p vv q) ) is :

    Text Solution

    |

  19. underset(x to 0)(lim)(x(""(e)^((sqrt(1+x^(2)+x^(4))-1)/x)-1))/(sqrt(1+...

    Text Solution

    |

  20. If the sum of the first 20 terms of the series log((7^(1//2)))x + l...

    Text Solution

    |