Home
Class 12
MATHS
Let [x] denote the greatest integer less...

Let [x] denote the greatest integer less than or equal to x. Then the value of `int_(1)^(2)|2x-[3x]|dx` is ______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{2} |2x - [3x]| \, dx \), we will break it down step by step. ### Step 1: Understand the greatest integer function The greatest integer function, denoted as \([x]\), returns the largest integer less than or equal to \(x\). For \(x\) in the interval \([1, 2]\), we can evaluate \([3x]\): - When \(x = 1\), \(3x = 3\) and \([3x] = 3\). - When \(x = 2\), \(3x = 6\) and \([3x] = 6\). Since \(3x\) varies from \(3\) to \(6\) as \(x\) goes from \(1\) to \(2\), we can break this integral into sub-intervals based on the value of \([3x]\). ### Step 2: Identify the intervals The function \([3x]\) changes at \(x = \frac{4}{3}\) and \(x = \frac{5}{3}\): - For \(1 \leq x < \frac{4}{3}\), \([3x] = 3\). - For \(\frac{4}{3} \leq x < \frac{5}{3}\), \([3x] = 4\). - For \(\frac{5}{3} \leq x < 2\), \([3x] = 5\). ### Step 3: Break the integral into parts We can now express the integral as: \[ \int_{1}^{2} |2x - [3x]| \, dx = \int_{1}^{\frac{4}{3}} |2x - 3| \, dx + \int_{\frac{4}{3}}^{\frac{5}{3}} |2x - 4| \, dx + \int_{\frac{5}{3}}^{2} |2x - 5| \, dx \] ### Step 4: Evaluate each integral 1. **For \(1 \leq x < \frac{4}{3}\)**: - Here, \(2x - 3 < 0\), so \(|2x - 3| = 3 - 2x\). - The integral becomes: \[ \int_{1}^{\frac{4}{3}} (3 - 2x) \, dx \] 2. **For \(\frac{4}{3} \leq x < \frac{5}{3}\)**: - Here, \(2x - 4 < 0\), so \(|2x - 4| = 4 - 2x\). - The integral becomes: \[ \int_{\frac{4}{3}}^{\frac{5}{3}} (4 - 2x) \, dx \] 3. **For \(\frac{5}{3} \leq x < 2\)**: - Here, \(2x - 5 \geq 0\), so \(|2x - 5| = 2x - 5\). - The integral becomes: \[ \int_{\frac{5}{3}}^{2} (2x - 5) \, dx \] ### Step 5: Calculate the integrals 1. **First integral**: \[ \int_{1}^{\frac{4}{3}} (3 - 2x) \, dx = \left[ 3x - x^2 \right]_{1}^{\frac{4}{3}} = \left(3 \cdot \frac{4}{3} - \left(\frac{4}{3}\right)^2\right) - \left(3 \cdot 1 - 1^2\right) \] \[ = \left(4 - \frac{16}{9}\right) - (3 - 1) = \left(4 - \frac{16}{9}\right) - 2 = \frac{36}{9} - \frac{16}{9} - \frac{18}{9} = \frac{2}{9} \] 2. **Second integral**: \[ \int_{\frac{4}{3}}^{\frac{5}{3}} (4 - 2x) \, dx = \left[ 4x - x^2 \right]_{\frac{4}{3}}^{\frac{5}{3}} = \left(4 \cdot \frac{5}{3} - \left(\frac{5}{3}\right)^2\right) - \left(4 \cdot \frac{4}{3} - \left(\frac{4}{3}\right)^2\right) \] \[ = \left(\frac{20}{3} - \frac{25}{9}\right) - \left(\frac{16}{3} - \frac{16}{9}\right) = \left(\frac{60}{9} - \frac{25}{9}\right) - \left(\frac{48}{9} - \frac{16}{9}\right) = \frac{35}{9} - \frac{32}{9} = \frac{3}{9} = \frac{1}{3} \] 3. **Third integral**: \[ \int_{\frac{5}{3}}^{2} (2x - 5) \, dx = \left[ x^2 - 5x \right]_{\frac{5}{3}}^{2} = \left(2^2 - 5 \cdot 2\right) - \left(\left(\frac{5}{3}\right)^2 - 5 \cdot \frac{5}{3}\right) \] \[ = (4 - 10) - \left(\frac{25}{9} - \frac{25}{3}\right) = -6 - \left(\frac{25}{9} - \frac{75}{9}\right) = -6 + \frac{50}{9} = -\frac{54}{9} + \frac{50}{9} = -\frac{4}{9} \] ### Step 6: Combine the results Now, we combine the results of all three integrals: \[ \int_{1}^{2} |2x - [3x]| \, dx = \frac{2}{9} + \frac{1}{3} - \frac{4}{9} \] Convert \(\frac{1}{3}\) to ninths: \[ \frac{1}{3} = \frac{3}{9} \] Thus, \[ \int_{1}^{2} |2x - [3x]| \, dx = \frac{2}{9} + \frac{3}{9} - \frac{4}{9} = \frac{1}{9} \] ### Final Answer The value of the integral \( \int_{1}^{2} |2x - [3x]| \, dx \) is \( \frac{1}{9} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

If [x] dentoes the greatest integer less than or equal to x, then the value of int _(0)^(5)[|x-3|] dx is

If [x] denotes the greatest integer less than or equal to x then the value of int_(0)^(2)(|x-2|+[x])dx is equal to

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to

Let [x] denote the greatest integer less than or equal to x . Then, int_(1)^(-1)[x]dx=?

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

Let [x] denote the greatest integer less than or equal to x.the value of the integeral int_(1)^(n)[x]^(x-{x})dx

If [x] denotes the greatest integer less than or equal to x, then the value of lim_(x rarr1)(1-x+[x-1]+[1-x]) is

If [x] denotes the greatest integer less than or equal to x, then find the value of the integral int_(0)^(2)x^(2)[x]dx

Consider the integral I=int_(0)^(10)([x]e^([x]))/(e^(x-1))dx , where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. Let a, b, c in R be all non-zero and satisfy a^(3)+b^(3)+c^(3)=2. If ...

    Text Solution

    |

  2. Let the position vectors of points ‘A’ and ‘B’ be hat(i)+hat(j) + hat...

    Text Solution

    |

  3. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  4. If y=sum(k=1)^6 K cos^(-1)(3/5coskx-4/5sinkx) then (dy)/(dx)=

    Text Solution

    |

  5. If the variance of the terms in an increasing A.P., b(1),b(2), b(3), ...

    Text Solution

    |

  6. For a positive integer n, (1+1/x)^(n) is expanded in increasing pow...

    Text Solution

    |

  7. If the system of linear equations x + y + 3z = 0 x + 3y + k^2 z ...

    Text Solution

    |

  8. If alpha and beta are the roots of the equation, 7x^2 -3x -2 = 0 , the...

    Text Solution

    |

  9. If x = 1 is a critical point of the function f(x) = (3x^2 + ax -2 - a...

    Text Solution

    |

  10. The area (in sq. units ) of the region A = { (x,y):(x - 1) [x] lt= y l...

    Text Solution

    |

  11. If the sum of the second , third and fourth terms of a positive term G...

    Text Solution

    |

  12. ((-1+sqrt(3)i)/(1-i))^(30) simplifies to

    Text Solution

    |

  13. If L = sin^2 ((pi)/(16)) - sin^2 ( pi/8) and M = cos^2 ( (pi)/(16...

    Text Solution

    |

  14. If a + x = b + y = c + z + 1 , where a, b,c,x,y,z are non polar distin...

    Text Solution

    |

  15. If the line y = mx + c is a common tangent to the hyperbola (x^2)/(10...

    Text Solution

    |

  16. Which of the following points lies on the tangent to the curve x^4 e^y...

    Text Solution

    |

  17. The statement (p to (q to p)) to (p to (p vv q) ) is :

    Text Solution

    |

  18. underset(x to 0)(lim)(x(""(e)^((sqrt(1+x^(2)+x^(4))-1)/x)-1))/(sqrt(1+...

    Text Solution

    |

  19. If the sum of the first 20 terms of the series log((7^(1//2)))x + l...

    Text Solution

    |

  20. the derivation of tan^-1((sqrt(1+x^2)-1)/x) with respect to tan^-1((2...

    Text Solution

    |