Home
Class 12
MATHS
Let y = y (x) be the solution of the dif...

Let y = y (x) be the solution of the differential equation
` cos x (dy)/(dx) + 2y sin x = sin 2x , x in (0, pi/2) ` .
If `y(pi//3) = 0, " then " y(pi//4)` is equal to :

A

`2 - sqrt2`

B

`2 + sqrt2`

C

`sqrt2 - 2`

D

`(1)/(sqrt2) - 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation \( \cos x \frac{dy}{dx} + 2y \sin x = \sin 2x \) with the initial condition \( y\left(\frac{\pi}{3}\right) = 0 \), we will follow these steps: ### Step 1: Rewrite the Differential Equation We start with the equation: \[ \cos x \frac{dy}{dx} + 2y \sin x = \sin 2x \] Dividing through by \( \cos x \) gives: \[ \frac{dy}{dx} + 2y \tan x = \frac{\sin 2x}{\cos x} \] ### Step 2: Identify \( p(x) \) and \( q(x) \) From the standard form \( \frac{dy}{dx} + p(x)y = q(x) \), we identify: \[ p(x) = 2 \tan x, \quad q(x) = \frac{\sin 2x}{\cos x} \] ### Step 3: Find the Integrating Factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int p(x) \, dx} = e^{\int 2 \tan x \, dx} \] The integral of \( \tan x \) is \( -\ln(\cos x) \), thus: \[ \mu(x) = e^{2 \ln(\sec x)} = \sec^2 x \] ### Step 4: Multiply the Equation by the Integrating Factor Multiplying the entire differential equation by \( \sec^2 x \): \[ \sec^2 x \frac{dy}{dx} + 2y \sec^2 x \tan x = 2 \sec^2 x \sin x \] ### Step 5: Recognize the Left Side as a Derivative The left side can be expressed as the derivative of a product: \[ \frac{d}{dx}(y \sec^2 x) = 2 \sec^2 x \sin x \] ### Step 6: Integrate Both Sides Integrating both sides gives: \[ y \sec^2 x = \int 2 \sec^2 x \sin x \, dx \] Using integration by parts or recognizing the integral: \[ \int 2 \sec^2 x \sin x \, dx = 2 \sin x \tan x - 2 \int \tan x \cos x \, dx \] This simplifies to: \[ y \sec^2 x = 2 \sin x \tan x + C \] ### Step 7: Solve for \( y \) Rearranging gives: \[ y = 2 \sin x \tan x \cos^2 x + C \cos^2 x \] ### Step 8: Apply the Initial Condition Using the initial condition \( y\left(\frac{\pi}{3}\right) = 0 \): \[ 0 = 2 \sin\left(\frac{\pi}{3}\right) \tan\left(\frac{\pi}{3}\right) \cos^2\left(\frac{\pi}{3}\right) + C \cos^2\left(\frac{\pi}{3}\right) \] Calculating the values: \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \tan\left(\frac{\pi}{3}\right) = \sqrt{3}, \quad \cos^2\left(\frac{\pi}{3}\right) = \frac{1}{4} \] Substituting gives: \[ 0 = 2 \cdot \frac{\sqrt{3}}{2} \cdot \sqrt{3} \cdot \frac{1}{4} + C \cdot \frac{1}{4} \] This simplifies to: \[ 0 = \frac{3}{4} + \frac{C}{4} \implies C = -3 \] ### Step 9: Substitute Back to Find \( y \) Thus, the equation becomes: \[ y = 2 \sin x \tan x \cos^2 x - 3 \cos^2 x \] ### Step 10: Find \( y\left(\frac{\pi}{4}\right) \) Calculating \( y\left(\frac{\pi}{4}\right) \): \[ y\left(\frac{\pi}{4}\right) = 2 \sin\left(\frac{\pi}{4}\right) \tan\left(\frac{\pi}{4}\right) \cos^2\left(\frac{\pi}{4}\right) - 3 \cos^2\left(\frac{\pi}{4}\right) \] Using \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \tan\left(\frac{\pi}{4}\right) = 1, \cos^2\left(\frac{\pi}{4}\right) = \frac{1}{2} \): \[ y\left(\frac{\pi}{4}\right) = 2 \cdot \frac{1}{\sqrt{2}} \cdot 1 \cdot \frac{1}{2} - 3 \cdot \frac{1}{2} \] This simplifies to: \[ y\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} - \frac{3}{2} \] ### Final Answer Thus, the value of \( y\left(\frac{\pi}{4}\right) \) is: \[ \frac{1}{\sqrt{2}} - 2 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

Solution of the differential equation cos x cos y dy -sin x sin y dx=0 is

Solution of the differential equation sin x. cos y dy + cos x. sin y dx = 0 is

The solution of the differential equation (dy)/(dx)+(sin2y)/(x)=x^(3)cos^(2)y

The solution of differential equation cos x dy = y (sin x - y ) dx, 0 lt x lt pi //2 is

The solution the differential equation "cos x sin y dx" + "sin x cos y dy" =0 is

Let y=g(x) be the solution of the differential equation (sin(dy))/(dx)+y cos x=4x,x in(0,pi) If y(pi/2)=0,theny(pi/6)^(*) is equal to

Let y = y (x) be the solution of the differential equation xdy = (y + x^3 cos x)dx with y( pi ) = 0, then y ((pi)/(2)) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. The statement (p to (q to p)) to (p to (p vv q) ) is :

    Text Solution

    |

  2. underset(x to 0)(lim)(x(""(e)^((sqrt(1+x^(2)+x^(4))-1)/x)-1))/(sqrt(1+...

    Text Solution

    |

  3. If the sum of the first 20 terms of the series log((7^(1//2)))x + l...

    Text Solution

    |

  4. the derivation of tan^-1((sqrt(1+x^2)-1)/x) with respect to tan^-1((2...

    Text Solution

    |

  5. If int(cos theta)/(5 + 7 sin theta - 2 cos^2 theta) d theta = A loge |...

    Text Solution

    |

  6. Let y = y (x) be the solution of the differential equation cos x (...

    Text Solution

    |

  7. If the length of the chord of the circle , x^2 + y^2 = r^2 (r gt 0) a...

    Text Solution

    |

  8. If the mean and the standard deviation of the data 3,5,7,a,b are 5 an...

    Text Solution

    |

  9. If for some alpha in R, the lines L1 : (x + 1)/(2) = (y-2)/(-1) = (...

    Text Solution

    |

  10. There are three sections in a question paper, each containing 5 questi...

    Text Solution

    |

  11. Find the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^6

    Text Solution

    |

  12. In a bombing attack , there is 50% chance that a bomb will hit target ...

    Text Solution

    |

  13. If the lines x + y =a and x - y = b touch the curves y = x^2 -3 x + 2 ...

    Text Solution

    |

  14. Let the vectors veca, vecb, vecc be such that |veca| = 2 |vecb| = 4 " ...

    Text Solution

    |

  15. Let A = { a, b,c } and B = {1, 2, 3, 4} . Then the number of elements ...

    Text Solution

    |

  16. The consists of 6 multiple choice questions, each having 4 alternative...

    Text Solution

    |

  17. If vec a =2 hat i + hat j + 2 hat k, then the value of | hat i xx (va...

    Text Solution

    |

  18. Let {x} and [x] denote the fractional part of x and the greatest inter...

    Text Solution

    |

  19. If the variance of the following frequency distribution , {:("Class","...

    Text Solution

    |

  20. Let PQ be a diameter of the circle x^(2) + y^(2)=9 If alpha and beta a...

    Text Solution

    |