Home
Class 11
MATHS
|x^2+x+2|-|x^2-x+1|=|2x+1|...

`|x^2+x+2|-|x^2-x+1|=|2x+1|`

Promotional Banner

Similar Questions

Explore conceptually related problems

| x ^ (2) + x + 2 |-| x ^ (2) -x + 1 | = | 2x + 1 |

Number of points where f(x)=x^2-|x^2-1|+2||x|-1|+2|x|-7 is non-differentiable is a. 0 b. 1 c. 2 d. 3

Number of points where f(x)=x^(2)-|x^(2)-1|+2||x|-1|+2|x|-7 is non-differentiable is a.0 b.1 c.2 d.3

Solve: |[x^2-1, x^2+2x+1, 2x^2+3x+1], [2x^2+x-1, 2x^2+5x-3, 2x^2+4x-3], [6x^2-x-2, 6x^2-7x+2, 12x^2-5x-2]|=0.

Solve: |x^2-1x^2+2x+1 2x^2+3x+1 2x^2+x-1 2x^2+5x-3 2x^2+4x-3 6x^2-x-2 6x^2-7x+2 12 x^2-5x-2|=0.

Solve: |[x^2-1, x^2+2x+1, 2x^2+3x+1], [2x^2+x-1, 2x^2+5x-3, 2x^2+4x-3], [6x^2-x-2, 6x^2-7x+2, 12x^2-5x-2]|=0.

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

y=|(x^2+x, x+1, x-2),(2x^2+3x+1, 3x, 3x-3),(x^2+3x+2, 2x-1, 2x-1)| represents (A) a straight line (B) a circle (C) a parabola (D) none of these