Home
Class 12
MATHS
If A=[(k,l),(m,n)] and kn!=lm, show that...

If `A=[(k,l),(m,n)]` and `kn!=lm,` show that `A^(2)-(k+n)A+(kn-lm)l=O.` Hence, find `A^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(k,l),(m,n)] and kn!=lm, show that A^(2)-(k+n)A+(kn-lm)I=0. Hence, find A^(-1)

If .^(n)C_(3)=k.n(n-1)(n-2) then k=

Factories: (l +m)^(2) - 4 lm

Using formula let's show that. (l + m)^2 = (l - m)^2 + 4lm

If l, m and n are real numbers such that l^(2)+m^(2)+n^(2)=0 , then |(1+l^(2),lm,l n),(lm,1+m^(2),mn),(l n,mn,1+n^(2))| is equal to a)0 b)1 c) l+m+n+2 d) 2(l+m+n)+3

If x/(lm-n^2)=y/(mn-l^2)=z/(nl-m^2) , then show that lx+my+nz=0

Factorize (l+m)^(2)-4lm

If x/(lm - n^(2)) = y/(mn - l^(2)) = z/(nl - m^(2)) , then show that lx + my + nz = 0 .

Show that |__kn is divisible by (|__n)^k

Show that |__kn is divisible by (|__n)^k