Home
Class 12
MATHS
" 1.Prove that ":sin^(2)24^(@)-sin^(2)6^...

" 1.Prove that ":sin^(2)24^(@)-sin^(2)6^(@)=(sqrt(5)-1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Provet that: sin^(2)72^(2)-sin^(2)60^(2)=(sqrt(5)-1)/(8)

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

sin ^(2) 24 ^(@) - sin ^(2) 6^(@) = (sqrt5 -1)/(8).

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)