Home
Class 11
MATHS
Prove that (a^8+b^8+c^8)/(a^3b^3c^3)>1/a...

Prove that `(a^8+b^8+c^8)/(a^3b^3c^3)>1/a+1/b+1/c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (a^(8)+b^(8)+c^(8))/(a^(3)b^(3)c^(3))>(1)/(a)+(1)/(b)+(1)/(c)

Prove that |(1,1,1),(a,b,c),(a^3,b^3,c^3)| = (a - b)(b-c)(c-a)(a+b+c) .

If a+b+c=1, then prove that (8)/(27abc)>{(1)/(a)-1}{(1)/(b)-1}{(1)/(c)-1}>8

If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

Prove that |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

If a , b , c are real and positive , prove that the inequality (1)/(a)+(1)/(b)+(1)/( c) lt (a^8+b^8+c^8)/(a^3b^3c^3) .