Home
Class 11
MATHS
Find the value of the sum(r=1)^nsum(s=1)...

Find the value of the `sum_(r=1)^nsum_(s=1)^ndelta_(rs)2^r3^r` where `delta_(rs)` is zero if `r!=s` & `delta'_(rs)` is one if `r=s`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the sum_(r=1)^(n)sum_(s=1)^(n)delta_(rs)2^(r)3^(r) where delta_(rs) is zero if r!=s o* delta_(rs)^( prime),s one if r=s

Find the value of sum_(r=1)^(10)sum_(s=1)^(10)tan^(-1)(r/s)dot

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))

sum_(r=1)^nr^2-sum_(m=1)^nsum_(r=1)^mr is equal to

The value of sum_(r=0)^nsum_(s=0)^nsum_(t=0)^nsum_(u=0)^n(1) is

sum_(s=1)^(10)sum_(r=0)^(s-1)(2^(s)-2^(r))

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

Find the value of (p^(2)+q^(2))/(r^(2)+s^(2)) , if p:q=r:s