Home
Class 11
MATHS
if a>0,c>0,b=sqrtac,a!=1,c!=1,ac!=1 and ...

if `a>0,c>0,b=sqrtac,a!=1,c!=1,ac!=1` and `n>0` then the value of `(log_an-log_bn)/(log_bn-log_cn)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

if quad 0,c>0,b=sqrt(ac),a!=1,c!=1,ac!=1 and n>0 then the value of (log a^(n)-log b^(n))/(log b^(n)-log c^(n)) is equal to

if quad 0,c>0,b=sqrt(ac),a!=1,c!=1,ac!=1a>dn>0 then find an expression for (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) in terms of log_(a)n and log_(c)n

The value of a^((log_b(log_bN))/(log_b a)), is

If a^(3)-b^(3)=0 then the value of log(a+b)-(1)/(2)(log a+log b+log3) is equal to

If a^(3)-b^(3)=0 then the value of log(a+b)-(1)/(2)(log a+log b+log3) is equal to

If a^(3)-b^(3)=0 then the value of log(a+b)-(1)/(2)(log a+log b+log3) is equal to

Let agt0,cgt0,b=sqrtac,a,c and acne1,Ngt0 . Prove that log_aN/log_cN=(log_aN-log_bN)/(log_bN-log_cN)

Let agt0,cgt0,b=sqrtac,a,c and acne1,Ngt0 . Prove that log_aN/log_cN=(log_aN-log_bN)/(log_bN-log_cN)

Let agt0,cgt0,b=sqrtac,a,c and acne1,Ngt0 . Prove that log_aN/log_cN=(log_aN-log_bN)/(log_bN-log_cN)