Home
Class 12
PHYSICS
If phi(1) and phi(2) be the apparent ang...

If `phi_(1)` and `phi_(2)` be the apparent angles of dip observed in two vertical planes at right angles to each other , then show that the true angle of dip `phi` is given by `cot^(2) phi = cot^(2) phi_(1) + cot^(2) phi_(2)`.

Text Solution

Verified by Experts

Angle of dip on meridian one is
`tan del _(1) = (B_(v))/(B _(H) cos phi)`
` tan del_(1) = (tan del )/(cos phi)`
` cos phi = (tan del )/( tan del _(1))" "…(i)`
Angle of dip on the meridian 2 is
`tan del _(2) = (B_(v))/(B _(H) sin phi ) cos (90^(@) phi ) = sin phi `
` tan del _(2) = (tan del )/( sin phi)`
`sin phi = (tan del )/(tan del _(2))" "...(ii)`
Squaring and adding equation (i) and (ii).
`sin^(2) phi + cos ^(2) phi = (tan ^(2)del )/(tan ^(2) del _(2)) + (tan ^(2) del)/(tan ^(2) del _(1))`
`(1)/(tan ^(2)del)=(1)/(tan ^(2) del _(1))+ (1)/( tan ^(2) del _(2))`
` cos ^(2) del = cot ^(2) del _(1) + cot ^(2) del _(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If theta_1 and theta_2 be the apparent angles of dip observed in two vertical planes at right angles to each other, then the true angle of dip theta is given by

If theta_1 and theta_2 be the apparent angles of dip observed in two vertical planes at right angles to each other, then show that the true angle of dip, theta is given by cot^2theta=cot^2theta+cot^2theta .

Angles of dip in two vertical planes at right angles to each other are cot^(-1) (1/2) and cot^(-1)(1/3) respectively.True angle of the dip is

prove that: tan^(2) phi+cot^(2) phi+2=sec^(2)phi cosec^(2) phi

If phi(x)=phi'(x) and phi(1)=2, then phi(3) equals