Home
Class 9
MATHS
g*n(x+y)^(3)-3x^(2)y(x+y)...

g*n(x+y)^(3)-3x^(2)y(x+y)

Promotional Banner

Similar Questions

Explore conceptually related problems

x (x + y) ^ (3) -3x ^ (2) y (x + y)

If S_(n)=(x+y)+(x^(2)+xy+y^(2))+(x^(3)+x^(2)y+y^(2)x+y^(3))+…n terms then prove that (x-y)S_(n)=[(x^(2)(x^(n)-1))/(x-1)-(y^(2)y^(n)-1)/(y-1)] .

Evaluate lim_((x,y) to (1,2)) , g(x,y) , if the limit exist where g(x,y) =(3x^(2) - xy)/(x^(2) + y^(2)+ 3)

Sum the series : x(x+y)+x^(2)(x^(2)+y^(2))+x^(3)(x^(3)+y^(3)+... to n terms.

Sum the series: x(x+y)+x^(2)(x^(2)+y^(2))+x^(3)(x^(3)+y^(3)).... to n terms

Let f"":""N rarr Y be a function defined as f""(x)""=""4x""+""3 , where Y""=""{y in N"":""y""=""4x""+""3 for some x in N} . Show that f is invertible and its inverse is (1) g(y)=(3y+4)/3 (2) g(y)=4+(y+3)/4 (3) g(y)=(y+3)/4 (4) g(y)=(y-3)/4

x^(3)-3xy^(2)=183x^(2)y-y^(3)=26 If x,y in N

Let f"":""NvecY be a function defined as f""(x)""=""4x""+""3 , where Y""=""{y in N"":""y""=""4x""+""3 for some x in N} . Show that f is invertible and its inverse is (1) g(y)=(3y+4)/3 (2) g(y)=4+(y+3)/4 (3) g(y)=(y+3)/4 (4) g(y)=(y-3)/4