Home
Class 10
MATHS
lim(n rarr oo) (n(n+1))/(n^(2))=....

`lim_(n rarr oo) (n(n+1))/(n^(2))=`________.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(n+(-1)^(n))/(n)

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_(n rarr oo)(((-1)^(n)n)/(n^(2)+1))=0

lim_(n rarr oo) (nsqrt(n^(2)+1)-n) =

lim_(n rarr oo) n(sqrt(n^(2)+8)-n) =

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo) (1)/(n)= ________.