Home
Class 11
MATHS
lim(xto0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is...

`lim_(xto0)(sinx)/(sqrt(x+1)-sqrt(1-x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(xto0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(xto0)(a^x-1)/(sqrt(a+x)-sqrta) is

lim_(xto0)(3^(x)-1)/(sqrt(x+1)-1)

Solve the limit ; lim_(xto0)((x)/(sqrt(1+x)-sqrt(1-x)))

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to