Home
Class 12
MATHS
The range of the function f(x)=(e^x-e^(|...

The range of the function `f(x)=(e^x-e^(|x|))/(e^x+e^(|x|))` is `(-oo,oo)` (b) `[0,1]` `(-1,0]` (d) `(-1,1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is (a) (-oo,oo) (b) [0,1] (-1,0] (d) (-1,1)

The range of the function f(x)=(e^(x)-1)/(e^(x)+1) is

The range of the function f(x)=(e^(x)-e^(|z|))/(e^(x)+e^(|x|)) is (-oo,oo)(b)[0,1](-1,0](d)(-1,1)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

Range of the function f(x)=(ln x)/(sqrt(x)) is (a) (-oo,\ e) (b) (-oo,\ e^2) (c) (-oo,2/e) (d) (-oo,1/e)

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (A) (-oo,oo) (B) (0,oo (C) (-oo,""0) (D) (-oo,oo)"-"{0}

The interval of increase of the function f(x)=x-e^(x)+tan(2 pi/7) is (a) (0,oo)(b)(-oo,0)(c)(1,oo)(d)(-oo,1)

The interval of increase of the function f(x)=x-e^x+tan(2pi//7) is (a) (0,\ oo) (b) (-oo,\ 0) (c) (1,\ oo) (d) (-oo,\ 1)

Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^(|x|)) , then the range of f(x) is: (a)R (b) [0,1] (c) [0,1) (d) [0,1/2)