Home
Class 11
MATHS
If (log)(10)(x^3+y^3)-(log)(10)(x^2+y^2-...

If `(log)_(10)(x^3+y^3)-(log)_(10)(x^2+y^2-x y)lt=2,w h e r ex ,y` are positive real number, then find the maximum value of `x ydot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log)_(10)(x^3+y^3)-(log)_(10)(x^2+y^2-x y)lt=2, and x ,y are positive real number, then find the maximum value of x ydot

If (log)_(10)(x^3+y^3)-(log)_(10)(x^2+y^2-x y)lt=2, and x ,y are positive real number, then find the maximum value of x ydot

If log_(10)(x^(3)+y^(3))-log_(10)(x^(2)+y^(2)-xy)<=2, where x,y are positive real number,then find the maximum value of xy.

If log_(10) (x^3+y^3)-log_(10) (x^2+y^2-xy) =0, y>=0 is

If log_(10)(x^(3)+y^(3))-log_(10)(x^(2)+y^(2)-xy) =0,y>=0 is

If log_(10)|x^(3)+y^(3)|-log_(10)|x^(2)-xy+y^(2)|+log_(10)|x^(3)-y^(3)|-log_(10)|x^(2)+xy+y^(2)|=log_(10)221 . Where x, y are integers, then Q. If y=2 , then value of x can be :

If log_(10)x+log_(10)y=2, x-y=15 then :

If log_(10)x+log_(10)y=2, x-y=15 then :

If 3 log_(10) (x^(2) y) = 4 + 2 log_(10) x - log_(10) y , where x and y are both + ve, and x - y = 2 sqrt(6) , then the value of x is

If x , y >0,(log)_y x+(log)_x y=(10)/3 a n d x y=144 , t h e n(x+y)/2=sqrt("N")" w h e r e N" is a natural number, find the value of Ndot