Home
Class 12
MATHS
2int0^1(tan^(- 1)x)/x dx=...

`2int_0^1(tan^(- 1)x)/x dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^1 ((tan^(-1)x)/x) dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

int_0^(1) tan^(-1) x dx =

If I_(1)=int_(0)^((pi)/(2))(x)/(sin x)dx and I_(2)=int_(0)^(1)(tan^(-1)x)/(x)dx, then (I_(1))/(I_(2))=(A)1(B)(1)/(2) (C) 2 (D) (pi)/(2)

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then k=

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

2 int_(0)^(1) (tan^(-1)x)/(x) dx=

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=