Home
Class 11
MATHS
If y = x +1/x, show that x^2 dy/dx - xy ...

If `y = x +1/x,` show that `x^2 dy/dx - xy + 2 = 0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log (sqrt(1 + x^2) - x) = y sqrt(1 + x^2) , show that (1 - x^2) (dy)/(dx) + xy + 1 = 0

If sqrt(x^2 +1) y = log(sqrt(x^2+1)-x) , then show that (x^2 +1) dy/dx + xy + 1=0

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x), show that (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x) , show that, (x^(2)+1)(dy)/(dx)+xy+1=0

Find dy/dx xy^2 + x^2y + 1 = 0

If log(sqrt(1+x^(2))-x)=ysqrt(1+x^(2)) , then show that (1+x^(2))(dy)/(dx)+xy+1=0 .

If ysqrt(x^(2)+1)=log(x+sqrt(x^(2)+1)) , show that (x^(2)+1)(dy)/(dx)+xy-1=0 .

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .