Home
Class 12
MATHS
int(-2 pi)^(5 pi)cot^(-1)(tan x)dx...

int_(-2 pi)^(5 pi)cot^(-1)(tan x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

If I=int_(-2pi)^(5pi) cot^-1(tanx)dx . Then, 2I/pi^2 is ….

int_(-pi)^(5pi)cot^(-1)(cotx)dx equals

int_(pi//6)^(pi//3)(1)/(1+tan x) dx=

Evaluate int_(pi//6) ^(pi//3) cot^(-1)(5//2) x dx+ int_(pi//6)^(pi//3) tan^(-1)(5//2) x dx

int_(pi//4)^(pi//2)cot^(2)x dx =