Home
Class 12
lim(n rarr alpha)[(1^(2))/(n^(3)+1^(3))+...

lim_(n rarr alpha)[(1^(2))/(n^(3)+1^(3))+(2^(2))/(n^(3)+2^(3))+(3^(2))/(n^(3)+3^(3))+cdots+(1)/(2n)]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) [(1^(2))/(n^(3)+1^(3))+(2^(2))/(n^(3)+2^(3))+(3^(2))/(n^(3)+3^(3))+...+(1)/(2n)]

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_ (n rarr oo) [(1 ^ (2)) / (n ^ (3) + 1 ^ (3)) + (2 ^ (2)) / (n ^ (3) + 2 ^ (3)) + (3 ^ (2)) / (n ^ (3) + 3 ^ (3)) + ... * (1) / (2n)]

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

lim_(nto oo)((1^(2))/(1-n^(3))+(2^(2))/(1-n^(3))+ . . . .+(n^(2))/(1-n^(3)))=

Prove that lim_ (n rarr oo) ((1 ^ (2)) / (n ^ (3)) + (2 ^ (2)) / (n ^ (3)) + (3 ^ (2)) / ( n ^ (3)) + .... + (n ^ (2)) / (n ^ (3))) = (1) / (3)

Lt_(n rarr oo)((1^(2)+1)/(n^(3))+(2^(2)+2)/(n^(3))+(3^(2)+3)/(n^(3))+...+(n^(2)+n)/(n^(3)))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)