Home
Class 12
MATHS
[" Q."64" If the function "f(x)=(1+3x-x^...

[" Q."64" If the function "f(x)=(1+3x-x^(2))/(x-4)" ,where 't is a parameter has a minimum and a maximum then the "],[" range of values of "is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(t+3x-x^(2))/(x-4) , where t is a parameter that has a minimum and maximum , then the range of values of t is

If the function f(x)=(t+3x-x^(2))/(x-4), where is a parameter, has a minimum and a maximum, then the greatest value of t is ….. .

If f(x)=(t+3x-x^(2))/(x-4), where t is a parameter that has minimum and maximum,then the range of values of t is (0,4)(b)(0,oo)(-oo,4)(d)(4,oo)

If f(x) = (t + 3x - x^(2))/(x - 4) , where t is a parameter for which f(x) has a minimum and maximum, then the range of values of t is a)(0, 4) b) (0, oo) c) (-oo, 4) d) (4, oo)

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (0,4) (b) (0,oo) (-oo,4) (d) (4,oo)

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (a) (0,4) (b) (0,oo) (c) (-oo,4) (d) (4,oo)

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (a) (0,4) (b) (0,oo) (c) (-oo,4) (d) (4,oo)

If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and maximum, then the range of values of t is (a) (0,4) (b) (0,oo) (c) (-oo,-11) (d) (4,oo)

The function f(x)=x^(2)e^(x) has minimum value

Show that the function f(x)=(2)/(3)x^(3)-6x^(2)+20x-5 has neither a maximum nor a minimum value.