Home
Class 12
MATHS
[" Let "tan^(-1)y=tan^(-1)x+tan^(-1)((2x...

[" Let "tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-30^(2)))],[" tohero "|x|<(1)/(sqrt(3))" ,then the value "],[" of "y" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x| lt (1)/(sqrt3) . Then a value of y is

Let tan ^(-1) y= tan ^(-1) x+ tan ^(-1) ""((2x)/(1-x^(2))) where |x| lt (1)/(sqrt(3)) . Then a value of y is -

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is :

Let tan^(-1)y = tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x| le 1/sqrt3 . Then the value of y is

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Let, tan^-1y=tan^-1x+tan^-1((2x)/(1-x^2)) , where absx lt 1/sqrt3 . Then a value of y is:

tan^(-1)x+tan^(-1) (1-x) = 2 tan ^(-1) sqrt(x(1-x))