Home
Class 11
MATHS
In a triangle ABC, if sinAsin(B-C)=sinCs...

In a triangle ABC, if `sinAsin(B-C)=sinCsin(A-B),` then prove that `cotA ,cotB ,cotC` are in `AdotPdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotCa r einAdotPdot

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotCa r einAdotPdot

In a triangle ABC, if sin A sin (B-C)= sin c sin (A-B) , then prove that cotA, cotB, CotC are in AP.

If a^2,b^2,c^2 are in A.P., prove that cotA ,cotB ,cotC are in AdotPdot

If a^2,b^2,c^2 are in A.P., prove that cotA ,cotB ,cotC are in AdotPdot

if in a triangle ABC ,a^2,b^2,c^2 are in A.P. then show that cotA,cotB and cotC are also in A.P

In a triangle A+B+C=90 then prove that cotA+cotB+cotC=cotAcotBcotC

If a^2,b^2,c^2 being A.P prove that cotA,cotB,cotC are also In A.P.

Show that: sinAsin(B-C)+sinB sin(C-A)+sinCsin(A-B)=0

Show that: sinAsin(B-C)+sinB sin(C-A)+sinCsin(A-B)=0