Home
Class 10
MATHS
If tan^2theta=1-a^2, prove thats e cthet...

If `tan^2theta=1-a^2,` prove that`s e ctheta+tan^3thetacos e ctheta=(2-a^2)^(3/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If t a n^2theta=1-a^2 , prove that sectheta+t a n^3thetacos e ctheta=(2-a^2)^(3//2).

If tan^2theta=1-e^2 ,Prove that sectheta+tan^3thetacosectheta=(2-e^2)^(3//2)

If tan ^2theta=1-e^2 , prove that, sectheta+tan^3thetacosec theta=(2-e^2)^(3/2) .

If tan^2 theta= 1-e^2 prove that sec theta + tan^3 theta cosec theta = (2-e^2)^(3/2)

If tan^2 theta=1-e^2 then prove that sec theta+tan^3 theta cosec theta=(2-e^2)^(3/2)

If tan^(2)theta=1-a^(2), prove that sec theta+tan^(3)theta csc theta=(2-a^(2))^((3)/(2))

If tan^(2)theta=1-e^(2) prove that sec theta+tan^(3)theta cos ec theta=(2-e^(2))^((3)/(2))

If tan^(2)theta=1-e^(2) , then prove that sectheta+tan^(3)theta"cosec"theta=(2-e^(2))^((3)/(2)).

If tan^(2)theta=1-e^(2) , then prove that sectheta+tan^(3)theta"cosec"theta=(2-e^(2))^((3)/(2)).

If tan^(2)theta=1-e^(2) , then prove that sectheta+tan^(3)theta"cosec"theta=(2-e^(2))^((3)/(2)).